Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer IR spectroscopy

A HE DETERMINATION OF COMPOSITIONAL CHANGES acrOSS the molecular weight distribution of a polymer is of considerable interest to polymer chemists. This information allows the chemist to predict the physical properties and ultimately the performance of the polymer. Several analytical techniques are of use in determining these properties. Mass spectroscopy, NMR, viscosity measurements, light scattering, and infrared (IR) spectroscopy all can be used to provide data in one form or the other about the compositional details sought. Each method has its place in the determination of the details of the structure of a polymer. IR spectroscopy, generically known as Fourier transform IR (FTIR)... [Pg.253]

Oxazolidin-5-one, bis(trifluoromethyl)-reactions, 6, 213 Oxazolidinones polymers, 1, 281-282 reactions, 6, 213 Oxazolidinones, imino-rearrangement, 5, 775 Oxazolidinones, vinyl-polymers, 1, 281 Oxazolidin-2-ones circular dichroism, 6, 185 H NMR, 6, 181 IR spectroscopy, 6, 183 PE spectroscopy, 6, 183 reactions, 6, 213... [Pg.729]

Stmctural and chemical modification of urethane containing polymer matri-ces with macrocycles - calixarenes having reactive hydrazide groups have been carried out and stmcture, physico chemical and sensor properties of polyure-thanesemicarbazides (PUS) synthesised have been studied. The polymers obtained (on the base of polypropylene glycol MM 1000 and polysiloxane diol MM 860, hexamethylene diisocyanate and calixarene dihydrazide) are identified by IR-spectroscopy, size exclusion chromatography (SEC), DSC, WAXS and SAXS methods. [Pg.327]

As revealed by IR-spectroscopy, the attachment of the polymer proceeds via acylation of aminopropyls absorbances of both amides (1650 cm-1) and esters (1740 cm-1) contribute to the spectrum of polyacrylate-coated aminopropyl-Aerosil (specific surface area 175 m2/g) [55], During the reaction, the accumulation of p-nitrophenyl ester groups in the support is accompanied by the liberation of p-nitrophenol into the contacting solution. Thus, the evaluation of the conformational state of adsorbing macromolecules can be performed by the simultaneous study of both processes by UV-spectroscopy as shown in Fig. 7. Apparently, at... [Pg.155]

Head-group characterization by quantitative IR spectroscopy indicated 1.0 0.1 Si-H bond per polymer. This key data is evidence for the correctness of the proposition that PaMeSt carrying a Si-H head-group can be obtained by the use of HSi(CH3)2CH2CH29>CH2Cl/Me3Al initiating system. [Pg.39]

Liquid crystalline main chain polymers with siloxane spacer groups were obtained by the hydrosilation of (Si—H) terminated polydimethylsiloxane oligomers and mesogenic groups with terminal double bonds as shown in Reaction Scheme XVII-(a). Reactions were usually carried out in THF with the Wacker Oil catalyst 255). Completion of the reactions was followed by the disappearance of the strong (Si—H) absorption band at 2140 cm-1 using IR spectroscopy. [Pg.47]

Details are given of the successful construction of a novel reversible system of network polymers between bifunctional monomers by utilising the equilibrium polymerisation system of a spiro orthoester. Molecular structures were determined by NMR and IR spectroscopy. 9 refs. [Pg.78]

Lussier [71] has given an overview of Uniroyal Chemical s approach to the analysis of compounded elastomers (Scheme 2.2). Uncured compounds are first extracted with ethanol to remove oils for subsequent analysis, whereas cured compounds are best extracted with ETA (ethanol/toluene azeotrope). Uncured compounds are then dissolved in a low-boiling solvent (chloroform, toluene), and filler and CB are removed by filtration. When the compound is cured, extended treatment in o-dichlorobenzene (ODCB) (b.p. 180 °C) will usually suffice to dissolve enough polymer to allow its separation from filler and CB via hot filtration. Polymer identification was based on IR spectroscopy (key role), CB analysis followed ASTM D 297, filler analysis (after direct ashing at 550-600 °C in air) by means of IR, AAS and XRD. Antioxidant analysis proceeded by IR examination of the nonpolymer ethanol or ETA organic extracts. For unknown AO systems (preparative) TLC was used with IR, NMR or MS identification. Alternatively GC-MS was applied directly to the preparative TLC eluent. [Pg.36]

Polymer/additive analysis then usually proceeds by separation of polymer and additives (cf. Scheme 2.12) using one out of many solvent extraction techniques (cf. Chapter 3). After extraction the residue is pressed into a thin film to verify that all extractables have been removed. UV spectroscopy is used for verification of the presence of components with a chromophoric moiety (phenolic antioxidants and/or UV absorbers) and IR spectroscopy to verify the absence of IR bands extraneous to the polymer. The XRF results before and after extraction are compared, especially when the elemental analysis does not comply with the preliminary indications of the nature of the additive package. This may occur for example in PA6/PA6.6 blends where... [Pg.44]

Applications Applications of UV/VIS spectrophotometry can be found in the areas of extraction monitoring and control, migration and blooming, polymer impregnation, in-polymer analysis, polymer melts, polymer-bound additives, purity determinations, colour body analysis and microscopy. Most samples measured with UV/VIS spectroscopy are in solution. However, in comparison to IR spectroscopy additive analysis in the UV/VIS range plays only a minor role as only a limited class of compounds exhibits specific absorption bands in the UV range with an intensity proportional to the additive concentration. Characteristic UV absorption bands of various common polymer additives are given in Scheirs [24],... [Pg.307]

FTIR instrumentation is mature. A typical routine mid-IR spectrometer has KBr optics, best resolution of around 1cm-1, and a room temperature DTGS detector. Noise levels below 0.1 % T peak-to-peak can be achieved in a few seconds. The sample compartment will accommodate a variety of sampling accessories such as those for ATR (attenuated total reflection) and diffuse reflection. At present, IR spectra can be obtained with fast and very fast FTIR interferometers with microscopes, in reflection and microreflection, in diffusion, at very low or very high temperatures, in dilute solutions, etc. Hyphenated IR techniques such as PyFTIR, TG-FTIR, GC-FTIR, HPLC-FTIR and SEC-FTIR (Chapter 7) can simplify many problems and streamline the selection process by doing multiple analyses with one sampling. Solvent absorbance limits flow-through IR spectroscopy cells so as to make them impractical for polymer analysis. Advanced FTIR... [Pg.316]

Dynamic IR spectroscopy coupled with 2D correlation analysis can provide insights into submolecular interactions in blends and compounds [1017], 2D IR spectroscopy allows identification of specific interactions between components in polymer mixtures. While blends and copolymers have been studied [1026], no reports on compounds have yet appeared. Applications of 2D IR spectroscopy to polymeric materials have been reviewed [1017,1026]. [Pg.562]

SEC has sometimes been used with off-line IR spectroscopy for the detection of polymer additives, such as dioctylphthalate, as well as on-line [39]. Dissolutions of PVC/DEHP and of PC/pentaerythritoltetrastearate (release agent) were analysed by SEC-FTIR using the thermospray/moving belt/DRIFT interface [40]. The detection limits of the method were in the 100 ng range, depending on the IR sensitivity and volatility of the solutes. This is not extremely sensitive. [Pg.695]

The scope of UV analysis of dissolved polymer/additive matrices is thus quite restricted and mainly limited to special cases in which the additive package is known, e.g. the determination of Irganox 1098 in GFR-PA4.6 after dissolution in H2SO4/HNO3. Fibre-optic dissolution analysis by means of a UV diode array spectrometer is well known. In comparison to IR spectroscopy, UV spectrophotometry is better equipped to provide quantitative data. [Pg.696]

The number average molecular weights, Mq, of the polymers obtained in Table II ranged from 1300 to 3900 as determined by vapor nressure osmometry (VPO), and they were further characterized by - -H- and C-NMR spectrometry at ambient temperature and at 90°C, as well as by IR spectroscopy. The homopolymers of isopropenylferro-cene were found to have the expected structure, P, shown below, obtained by polymerization through the isopropenyl units, as indicated by spectroscopic characterization ... [Pg.453]

The tacticity or distribution of asymmetric units in a polymer chain can be directly determined using NMR spectroscopy and infrared (IR) spectroscopy and has been studied for a variety of polymers. Figure 5(a) and 5(b) show the proton NMR spectra [26,27] and IR spectra [28,29], respectively, for the two stereoisomers of poly(methyl methacrylate) (PMMA), syndiotactic and isotactic PMMA. These two structures in a polymer like PMMA give rise to different signatures in both the techniques. In the case of the NMR spectra [26,27], the... [Pg.135]


See other pages where Polymer IR spectroscopy is mentioned: [Pg.5]    [Pg.395]    [Pg.406]    [Pg.759]    [Pg.31]    [Pg.149]    [Pg.5]    [Pg.395]    [Pg.406]    [Pg.759]    [Pg.31]    [Pg.149]    [Pg.329]    [Pg.150]    [Pg.567]    [Pg.110]    [Pg.415]    [Pg.322]    [Pg.368]    [Pg.396]    [Pg.53]    [Pg.139]    [Pg.863]    [Pg.873]    [Pg.192]    [Pg.21]    [Pg.46]    [Pg.54]    [Pg.99]    [Pg.267]    [Pg.301]    [Pg.302]    [Pg.315]    [Pg.316]    [Pg.317]    [Pg.452]    [Pg.377]    [Pg.166]    [Pg.8]   
See also in sourсe #XX -- [ Pg.186 , Pg.187 ]




SEARCH



Spectroscopy polymers

© 2024 chempedia.info