Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer catalyst preparation

Among the different approaches to immobilization, main chain chiral polymer catalysts are different from the traditional polymer catalysts prepared by anchoring monomeric chiral catalysts to an achiral polymer backbone (Pu, 1998). The three classes of synthetic main chain chiral polymers include ... [Pg.526]

Hquid—soHd preparing homogeneous slurries of light and heavy soHds such as polymers, catalyst, etc dissolving, crystallization, Hquid—soHd reactions, solvent extraction... [Pg.419]

Nylon-11. Nylon-11 [25035-04-5] made by the polycondensation of 11-aminoundecanoic acid [2432-99-7] was first prepared by Carothers in 1935 but was first produced commercially in 1955 in France under the trade name Kilsan (167) Kilsan is a registered trademark of Elf Atochem Company. The polymer is prepared in a continuous process using phosphoric or hypophosphoric acid as a catalyst under inert atmosphere at ambient pressure. The total extractable content is low (0.5%) compared to nylon-6 (168). The polymer is hydrophobic, with a low melt point (T = 190° C), and has excellent electrical insulating properties. The effect of formic acid on the swelling behavior of nylon-11 has been studied (169), and such a treatment is claimed to produce a hard elastic fiber (170). [Pg.236]

An unusual method for the preparation of syndiotactic polybutadiene was reported by The Goodyear Tire Rubber Co. (43) a preformed cobalt-type catalyst prepared under anhydrous conditions was found to polymerize 1,3-butadiene in an emulsion-type recipe to give syndiotactic polybutadienes of various melting points (120—190°C). These polymers were characterized by infrared spectroscopy and nuclear magnetic resonance (44—46). Both the Ube Industries catalyst mentioned previously and the Goodyear catalyst were further modified to control the molecular weight and melting point of syndio-polybutadiene by the addition of various modifiers such as alcohols, nitriles, aldehydes, ketones, ethers, and cyano compounds. [Pg.531]

Catalysis and Surface Science Developments in Chemicals from Methanol, Hydrotreating of Hydrocarbons, Catalyst Preparation, Monomers and Polymers, Photocatalysis and Photovoltaics, edited by Heinz Heinemann and Gabor A. Somorjai... [Pg.673]

Polymerizations catalyzed with coordination compounds are becoming more important for obtaining polymers with special properties (linear and stereospecific). The first linear polyethylene polymer was prepared from a mixture of triethylaluminum and titanium tetrachloride (Ziegler catalyst) in the early 1950s. Later, Natta synthesized a stereoregular polypropylene with a Ziegler-type catalyst. These catalyst combinations are now called Zieglar-Natta catalysts. [Pg.309]

Dodolet JP, Cote R, Faubert G, Denes G, Guay D, Bertrand P (1998) Iron catalysts prepared by high-temperature pyrolysis of tetraphenylporphyrins adsorbed on carbon black for oxygen reduction in polymer electrolyte fuel cells. Electrochim Acta 43 341-353... [Pg.342]

Kim and Somorjai have associated the different tacticity of the polymer with the variation of adsorption sites for the two systems as titrated by mesitylene TPD experiments. As discussed above, the TiCl >,/Au system shows just one mesitylene desorption peak which was associated with desorption from low coordinated sites, while the TiCl c/MgClx exhibits two peaks assigned to regular and low coordinated sites, respectively [23]. Based on this coincidence, Kim and Somorjai claim that isotactic polymer is produced at the low-coordinated site while atactic polymer is produced at the regular surface site. One has to bear in mind, however, that a variety of assumptions enter this interpretation, which may or may not be vahd. Nonetheless it is an interesting and important observation which should be confirmed by further experiments, e.g., structural investigations of the activated catalyst. From these experiments it is clear that the degree of tacticity depends on catalyst preparation and most probably on the surface structure of the catalyst however, the atomistic correlation between structure and tacticity remains to be clarified. [Pg.143]

In general, if condensation polymers are prepared with methylated aryl repeat units, free radical halogenatlon can be used to introduce halomethyl active sites and the limitations of electrophilic aromatic substitution can be avoided. The halogenatlon technique recently described by Ford11, involving the use of a mixture of hypohalite and phase transfer catalyst to chlorinate poly(vinyl toluene) can be applied to suitably substituted condensation polymers. [Pg.6]

Latex or emulsion polymers are prepared by emulsification of monomers in water by adding a surfactant. A water-soluble initiator is added, e.g., persulfate or hydrogen peroxide (with a metallic ion as catalyst), that polymerises the monomer yielding polymer particles, which have diameters of about 0.1 pm. The higher the concentration of surfactant added, the smaller the polymer particles. [Pg.82]

There is an absence of cis-to-trans isomerization with conversion or time for the C8 (1,5-cyclooctadiene) polymer. This is shown from 52 to 58% conversion after 1 to 16 hours reaction time in Table II and III. The above review (A0, A2, A3, A5) shows that the cis structure in polymers from 1,5-cyclooctadiene using various chloride catalysts fell below 50% cis even to 20% cis units this means that the second cis double bond from the monomer underwent extensive cis-to-trans isomerization following the ring-opening of the first cis bond. Where cis-2-butene isomerizes to trans structure using other catalyst preparations, there is no evidence of this for cis-2-butene using the iodine system. However, polymer molecular... [Pg.162]

Recently, Chaudhari compared the activity of dispersed nanosized metal particles prepared by chemical or radiolytic reduction and stabilized by various polymers (PVP, PVA or poly(methylvinyl ether)) with the one of conventional supported metal catalysts in the partial hydrogenation of 2-butyne-l,4-diol. Several transition metals (e.g., Pd, Pt, Rh, Ru, Ni) were prepared according to conventional methods and subsequently investigated [89]. In general, the catalysts prepared by chemical reduction methods were more active than those prepared by radiolysis, and in all cases aqueous colloids showed a higher catalytic activity (up to 40-fold) in comparison with corresponding conventional catalysts. The best results were obtained with cubic Pd nanosized particles obtained by chemical reduction (Table 9.13). [Pg.239]

We have discussed the structure and synthesis of the library of molecular catalysts for polymerization in Section 11.5.1. In the present section we want to take a closer look at the performance of the catalyst library and discuss the results obtained [87], The entire catalyst library was screened in a parallel autoclave bench with exchangeable autoclave cups and stirrers so as to remove the bottleneck of the entire workflow. Ethylene was the polymerizable monomer that was introduced as a gas, the molecular catalyst was dissolved in toluene and activated by methylalumoxane (MAO), the metal to MAO ratio was 5000. All reactions were carried out at 50°C at a total pressure of 10 bar. The activity of the catalysts was determined by measuring the gas uptake during the reaction and the weight of the obtained polymer. Figure 11.40 gives an overview of the catalytic performance of the entire library of catalysts prepared. It can clearly be seen that different metals display different activities. The following order can be observed for the activity of the different metals Fe(III) > Fe(II) > Cr(II) > Co(II) > Ni(II) > Cr(III). Apparently iron catalysts are far more active than any of the other central metal... [Pg.418]

The only solid acidic catalyst which has given high polymers at an appreciable rate at low temperatures, and which has been studied in some detail, is that described by Wichterle [41, 42]. This was prepared as follows A 10 per cent solution in hexane of aluminium tri-(s- or t-butoxide) was saturated with boron fluoride at room temperature, and excess boron fluoride was removed from the precipitate by pumping off about half the hexane. Two moles of boron fluoride were absorbed per atom of aluminium, and butene oligomers equivalent to two-thirds of the alkoxy groups were found in the solution the resulting solid had hardly any catalytic activity. When titanium tetrachloride was added to the suspension in hexane, an extremely active catalyst was formed but the supernatant liquid phase had no catalytic activity. The DP of the polymers formed by the catalyst prepared from the s-butoxide was much lower than that of polymers formed with a catalyst prepared from the r-butoxidc. [Pg.57]

Carbon-supported platinum (Pt) and platinum-rathenium (Pt-Ru) alloy are one of the most popular electrocatalysts in polymer electrolyte fuel cells (PEFC). Pt supported on electrically conducting carbons, preferably carbon black, is being increasingly used as an electrocatalyst in fuel cell applications (Parker et al., 2004). Carbon-supported Pt could be prepared at loadings as high as 70 wt.% without a noticeable increase of particle size. Unsupported and carbon-supported nanoparticle Pt-Ru, ,t m catalysts prepared using the surface reductive deposition... [Pg.151]


See other pages where Polymer catalyst preparation is mentioned: [Pg.43]    [Pg.512]    [Pg.319]    [Pg.497]    [Pg.43]    [Pg.512]    [Pg.319]    [Pg.497]    [Pg.440]    [Pg.342]    [Pg.311]    [Pg.47]    [Pg.3]    [Pg.175]    [Pg.212]    [Pg.333]    [Pg.347]    [Pg.52]    [Pg.56]    [Pg.143]    [Pg.144]    [Pg.259]    [Pg.165]    [Pg.214]    [Pg.226]    [Pg.61]    [Pg.24]    [Pg.279]    [Pg.165]    [Pg.184]    [Pg.43]    [Pg.56]    [Pg.18]    [Pg.412]    [Pg.47]    [Pg.453]    [Pg.31]    [Pg.232]   
See also in sourсe #XX -- [ Pg.169 ]




SEARCH



Catalysts preparation

Polymer catalysts

Polymer preparation

© 2024 chempedia.info