Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyethylene slurry phase/suspension process

Slurry phase (or suspension) process. The uniquedooldng equipment in Figure 23—5 is a loop reactor. This process also takes place in a solvent (in this case, normal hexane, isobutane, or isopentane) so that the mixture can be pumped continuously in a loop while the polymerization is taking place. Feeds (the solvent, comonomer if any, ethylene and Ziegler-Natta catalyst) are pumped into the loop and circulated. Polymerization rakes place continuously at temperatures below the melting point of the polyethylene allowing solid polymer particles to form enough to form slurry. The reaction takes place at 185—212°F and 75—150 psi. A slurry of HOPE in hexane is drawn off continuously or intermittently. [Pg.342]

It is tempting to suggest that polymer processes will gradually evolve toward bulk. Recently, the suspension process for impact polystyrene has been supplanted by the bulk process, and the emulsion process for ABS may similarly be replaced. However, the modern gas-phase process for polyethylene appears to represent an opposite trend. It seems that polymerization technology tends to eliminate solvents and suspending fluids other than the monomers themselves. When the monomer is a solvent for the polymer, bulk processes are preferred. When the monomer is not a solvent, suspension and slurry processes like those for polyethylene and polypropylene are employed. [Pg.135]

Commerical polymerizations of ethylene, propene, and other a-olefins are carried out as slurry (suspension) and gas-phase processes [Beach and Kissin, 1986 Diedrich, 1975 Lieberman and Barbe, 1988 Magovern, 1979 Vandenberg and Repka, 1977 Weissermel et al., 1975]. Solution polymerization has been used in the past for ethylene polymerization at 140-150°C, pressures of up to 8 MPa (1 MPa = 145 psi = 9.869 atm), using a solvent such as cyclohexane. The solution process with its higher temperatures was employed for polymerization with the relatively low efficiency early Phillips initiators. (Polyethylene, but not the initiator, is soluble in the reaction medium under the process conditions.) The development of a variety of high-efficiency initiators has allowed their use in lower-temperature suspension and gas-phase processes, which are more advantageous from many... [Pg.695]

Synthesis. The early PP plants used a slurry process adopted from polyethylene technology. An inert liquid hydrocarbon diluent, such as hexane, was stirred in an autoclave at temperatures and pressures sufficient to keep 10-20 percent of the propylene monomer concentrated in the liquid phase. The traditional catalyst system was the crystalline, violet form ofTiCl3 and A1C1(C2H5)2. Isotactic polymer particles that were formed remained in suspension and were removed as a 20-40 percent solid slurry while the atactic portion remained as a solution in the liquid hydrocarbon. The catalyst was deactivated and solubilized by adding HC1 and alcohol. The iPP was removed by centrifuging, filtration, or aqueous extraction, and the atactic portion was recovered by evaporation of the solvent. The first plants were inefficient because of low catalyst productivity and low crystalline yields. With some modifications to the catalyst system, basically the same process is in use today. [Pg.475]

The slurry suspension and the gas phase processes are the two main categories of processes to produce high density polyethylene. HDPE processes can be further sub-categorised into ... [Pg.38]

In a classic 1978 paper [5,6], L.L. Bohm reported on the experimental parameters needed to establish steady-state polymerization conditions in order to eliminate monomer transport phenomena from the experimental results. As pointed out by Bohm, suspension or slurry polymerization takes place if the polymerization temperature is lower than the polyethylene solubility temperature and, therefore, the semicrystalline polymer precipitates from the suspension medium as the polymerization proceeds. The important physical process is the mass transfer of ethylene, comonomer and hydrogen (chain transfer reagent used to control polymer molecular weight) from the gas phase through the suspension medium and into the growing polymer particle to the active site. In order to obtain correct kinetic results, concentration gradients and temperature gradients within the polymer particle need to be removed from the polymerization process to achieve the necessary steady-state polymerization conditions. [Pg.372]


See other pages where Polyethylene slurry phase/suspension process is mentioned: [Pg.13]    [Pg.97]   
See also in sourсe #XX -- [ Pg.342 ]




SEARCH



Phase processes

Polyethylene Phases

Polyethylene process

Processing polyethylene

Slurry (Suspension) Process

Slurry phase processes

Slurry phase/suspension process

Slurry processes

Slurry processing

Suspension phases

Suspension processes

© 2024 chempedia.info