Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyethylene solubility temperature

In a classic 1978 paper [5,6], L.L. Bohm reported on the experimental parameters needed to establish steady-state polymerization conditions in order to eliminate monomer transport phenomena from the experimental results. As pointed out by Bohm, suspension or slurry polymerization takes place if the polymerization temperature is lower than the polyethylene solubility temperature and, therefore, the semicrystalline polymer precipitates from the suspension medium as the polymerization proceeds. The important physical process is the mass transfer of ethylene, comonomer and hydrogen (chain transfer reagent used to control polymer molecular weight) from the gas phase through the suspension medium and into the growing polymer particle to the active site. In order to obtain correct kinetic results, concentration gradients and temperature gradients within the polymer particle need to be removed from the polymerization process to achieve the necessary steady-state polymerization conditions. [Pg.372]

WAN Wang, M., Sato, Y., Iketani, T., Takishima, S., Masuoka, H., Watanabe, T., and Fukasawa, Y., Solubility of HFC-134a, HCFC-142b, butane, and isobutane in low-density polyethylene at temperatures from 383.15 to 473.15K and at pressiues up to 3.4MPa, Fluid Phase Equil., 232, 1, 2005. [Pg.145]

Although Pd is cheaper than Rh and Pt, it is still expensive. In Pd(0)- or Pd(ll)-catalyzed reactions, particularly in commercial processes, repeated use of Pd catalysts is required. When the products are low-boiling, they can be separated from the catalyst by distillation. The Wacker process for the production of acetaldehyde is an example. For less volatile products, there are several approaches to the economical uses of Pd catalysts. As one method, an alkyldi-phenylphosphine 9, in which the alkyl group is a polyethylene chain, is prepared as shown. The Pd complex of this phosphine has low solubility in some organic solvents such as toluene at room temperature, and is soluble at higher temperature[28]. Pd(0)-catalyzed reactions such as an allylation reaction of nucleophiles using this complex as a catalyst proceed smoothly at higher temperatures. After the reaction, the Pd complex precipitates and is recovered when the reaction mixture is cooled. [Pg.5]

Margarine and butter contain fat plus water and water-soluble ingredients, eg, salt and milk soHds that impart flavor and color to the product. Generally these products are distributed at refrigerated temperatures to retain their quaHty. Greaseproof packaging, such as polyethylene-coated paperboard, aluminum foil/paper, parchment paper wraps, and polypropylene tubs, is used for butter and margarine (see Dairy substitutes). [Pg.449]

Solubility. Cross-linking eliminates polymer solubiUty. Crystallinity sometimes acts like cross-linking because it ties individual chains together, at least well below T. Thus, there are no solvents for linear polyethylene at room temperature, but as it is heated toward its (135°C), it dissolves in a variety of aUphatic, aromatic, and chlorinated hydrocarbons. A rough guide to solubiUty is that like dissolves like, ie, polar solvents tend to dissolve polar polymers and nonpolar solvent dissolve nonpolar polymers. [Pg.435]

The process yields a random, completely soluble polymer that shows no evidence of crystallinity of the polyethylene type down to —60°C. The polymer backbone is fully saturated, making it highly resistant to ozone attack even in the absence of antiozonant additives. The fluid resistance and low temperature properties of ethylene—acryUc elastomers are largely a function of the methyl acrylate to ethylene ratio. At higher methyl acrylate levels, the increased polarity augments resistance to hydrocarbon oils. However, the decreased chain mobiUty associated with this change results in less fiexibihty at low temperatures. [Pg.498]

Water-soluble polymers and polyelectrolytes (e.g., polyethylene glycol, polyethylene imine polyacrylic acid) have been used success-hilly in protein precipitations, and there has been some success in affinity precipitations wherein appropriate ligands attached to polymers can couple with the target proteins to enhance their aggregation. Protein precipitation can also be achieved using pH adjustment, since proteins generally exhibit their lowest solubility at their isoelectric point. Temperature variations at constant salt concentration allow for frac tional precipitation of proteins. [Pg.2060]

Polypropylene has a chemical resistance about the same as that of polyethylene, but it can be used at 120°C (250°F). Polycarbonate is a relatively high-temperature plastic. It can be used up to 150°C (300°F). Resistance to mineral acids is good. Strong alkalies slowly decompose it, but mild alkalies do not. It is partially soluble in aromatic solvents and soluble in chlorinated hydrocarbons. Polyphenylene oxide has good resistance to ahphatic solvents, acids, and bases but poor resistance to esters, ketones, and aromatic or chlorinated solvents. [Pg.2458]

There are thus no solvents at room temperature for polyethylene, polypropylene, poly-4 methylpent-l-ene, polyacetals and polytetrafluoroethylene. However, as the temperature is raised and approaches F , the FAS term becomes greater than AH and appropriate solvents become effective. Swelling will, however, occur in the amorphous zones of the polymer in the presence of solvents of similar solubility parameter, even at temperatures well below T. ... [Pg.84]

Since polyethylene is a crystalline hydrocarbon polymer incapable of specific interaction and with a melting point of about 100°C, there are no solvents at room temperature. Low-density polymers will dissolve in benzene at about 60°C but the more crystalline high-density polymers only dissolve at temperatures some 20-30°C higher. Materials of similar solubility parameter and low molecular weight will, however, cause swelling, the more so in low-density polymers Table 10.5). [Pg.224]

The most common backbone structure found in commercial polymers is the saturated carbon-carbon structure. Polymers with saturated carbon-carbon backbones, such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polyacrylates, are produced using chain-growth polymerizations. The saturated carbon-carbon backbone of polyethylene with no side groups is a relatively flexible polymer chain. The glass transition temperature is low at -20°C for high-density polyethylene. Side groups on the carbon-carbon backbone influence thermal transitions, solubility, and other polymer properties. [Pg.4]

Steric Stabilization. Steric stabilization was a term first introduced by Heller to explain how adsorbed polyethylene oxide polymers increased the salt concentration required for flocculation of negatively charged aqueous suspensions.(6) Heller s systems were stabilized by both mechanisms, as are most commercial dispersions today, aqueous and non-aqueous. Much of the more recent literature on steric stabilizers has been preoccupied with solubility requirements, for the solubility of polymers is a delicate matter and very sensitive to temperature and solvent... [Pg.332]

Does solubility in the mobile phase influence net retention Polyethylene glycols are more soluble in cold solvents than warm. What is the noted effect if the temperature of the liquid chromatography separation of poly ethers is raised ... [Pg.417]

Low-density polyethylene exists as a partially crystalline solid, Melting point 115°C. Its density has been found to range between 0.91-0.94. It is practically insoluble in any solvent at room temperature but is soluble in many solvents at temperature above 100°C. Some of the useful solvents for it are CC14. [Pg.146]

The solubility properties of polypropylene have been similar to that of polyethylene. Although polypropylene is insoluble at room temperature, yet it is soluble in hydrocarbons and chlorinated hydrocarbons at temperature above 80°C. [Pg.153]


See other pages where Polyethylene solubility temperature is mentioned: [Pg.285]    [Pg.162]    [Pg.132]    [Pg.506]    [Pg.494]    [Pg.14]    [Pg.134]    [Pg.257]    [Pg.437]    [Pg.22]    [Pg.276]    [Pg.45]    [Pg.132]    [Pg.320]    [Pg.321]    [Pg.324]    [Pg.57]    [Pg.139]    [Pg.300]    [Pg.310]    [Pg.119]    [Pg.17]    [Pg.246]    [Pg.635]    [Pg.48]    [Pg.109]    [Pg.145]    [Pg.415]    [Pg.294]    [Pg.296]    [Pg.217]    [Pg.680]    [Pg.190]    [Pg.194]   
See also in sourсe #XX -- [ Pg.80 ]




SEARCH



Polyethylene solubility

Polyethylene temperature

Solubility temperature

Temperature soluble

© 2024 chempedia.info