Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyethylene glycol structure

Glucose, sucrose, polyethylene glycol Structure stabilizer... [Pg.113]

With the discovery of the crowns and related species, it was inevitable that a search would begin for simpler and simpler relatives which might be useful in similar applications. Perhaps these compounds would be easier and more economical to prepare and ultimately, of course, better in one respect or another than the molecules which inspired the research. In particular, the collateral developments of crown ether chemistry and phase transfer catalysis fostered an interest in utilizing the readily available polyethylene glycol mono- or dimethyl ethers as catalysts for such reactions. Although there is considerable literature in this area, much of it relates to the use of simple polyethylene glycols in phase transfer processes. Since our main concern in this monograph is with novel structures, we will discuss these simple examples further only briefly, below. [Pg.311]

The materials shown and described above were generally prepared from the nucleophilic phenoxide or alkoxide and the appropriate bromide. The syntheses of a variety of such compounds were detailed in a report which appeared in 1977. In the same report, complex stability and complexation kinetics are reported. Other, detailed studies, of a similar nature have recently appeared" . Vogtle and his collaborators have also demonstrated that solid complexes can be formed even from simple polyethylene glycol ethers . Crystal structures of such species are also available... [Pg.317]

Formulation strategies for stabilization of proteins commonly include additives such as other proteins (e.g., serum albumin), amino acids, and surfactants to minimize adsorption to surfaces. Modification of protein structure to enhance stability by genetic engineering may also be feasible, as well as chemical modification such as formation of a conjugate with polyethylene glycol. [Pg.405]

ADA deficiency is most commonly associated with these mutations of the ADA structural gene that result in either unstable or inactive enzyme protein. Immune reconstitution would be achieved by enzyme replacement therapy with polyethylene glycol-modified bovine ADA (PEG-AD A), alone or in combination with gene therapy (H3). [Pg.34]

The general molecular structure of polyether-based polyurethanes is illustrated in Fig. 25.3 a). Typical polyether sequences include polyethylene glycol and polypropylene glycol. The length of the polyether sequences between urethane links can vary from one or two ether groups up to several hundred. As the length of the polyether sequences between urethane links increases, the polymer exhibits more of the properties normally associated with polyethers. [Pg.384]

The same approach was readily adaptable to solid-phase synthesis. A small library of unnatural derivatives of 140 was prepared with variation of the configuration and nature of R1 and R4 and with substitution on the benzene ring <2000JC0186>. Three natural alkaloids, Verrucine A, B, and Anacine, were synthesized by a similar pathway and the pyrazino[2,l- ]quinazoline as opposed to the benzodiazepine structure of Anacine was proved <2001JNP1497>. Fiscalin B and other derivatives were prepared by solid-phase synthesis using polyethylene glycol (PEG) resin <2002USP6376667>. [Pg.276]

If mono-hydroxyl functionalized polyethylene glycol), HO-PEG, is added to Ca(NTMS2)2.THF2, then addition of LA affords the diblock PEG-b-PLA (Mn= 15,500, Mn calc = 15,500, Mw/Mn = 1.03).832 Using a similar strategy the reaction of CaFI2 with telechelic diol HO-(PEG)-OH, followed by polymerization of L-LA results in a triblock structure, PLA-b-PEG-b-PLA of narrow polydispersity (1.02-1.08).835 836 Triblock copolymers of morpholine-2,5-diones with PEO have also been prepared in this manner.837... [Pg.44]

A broad range of silicone surfactants are commercially available, representing all of the structural classes—anionic, non-ionic, cationic, and amphoteric. The silicone moiety is lyophobic, i.e. lacking an affinity for a medium, and surfactant properties are achieved by substitution of lyophilic groups to this backbone. The most common functionalities used are polyethylene glycols however, a broad range exist, as shown in Table 2.8.1 [2,3]. [Pg.234]


See other pages where Polyethylene glycol structure is mentioned: [Pg.754]    [Pg.385]    [Pg.385]    [Pg.244]    [Pg.754]    [Pg.385]    [Pg.385]    [Pg.244]    [Pg.566]    [Pg.2064]    [Pg.31]    [Pg.357]    [Pg.143]    [Pg.12]    [Pg.58]    [Pg.35]    [Pg.45]    [Pg.83]    [Pg.143]    [Pg.150]    [Pg.221]    [Pg.37]    [Pg.159]    [Pg.385]    [Pg.118]    [Pg.67]    [Pg.9]    [Pg.490]    [Pg.351]    [Pg.141]    [Pg.188]    [Pg.768]    [Pg.361]    [Pg.531]    [Pg.54]    [Pg.318]    [Pg.89]    [Pg.192]    [Pg.183]    [Pg.100]    [Pg.44]    [Pg.21]   
See also in sourсe #XX -- [ Pg.352 ]




SEARCH



Glycollate, structure

Polyethylene glycol

Polyethylene glycole

© 2024 chempedia.info