Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Glass transition temperature polybutadiene

Wide-line H FID and relaxation measurements of a relatively simple motionally heterogeneous system, the triblock copolymer styrene-butadiene-styrene, have been performed in a temperature range between the polystyrene and polybutadiene glass transition temperatures. The two FID and the two Tip components found at each temperature have been correlated by means of a 2D approach. It is shown that this approach allows dynamic information, not accessible simply by interpreting proton Ti and Tip data, to be revealed. In the case examined, the correlation found could be confirmed by high-resolution H... [Pg.309]

Carbon Cha.in Backbone Polymers. These polymers may be represented by (4) and considered derivatives of polyethylene, where n is the degree of polymeriza tion and R is (an alkyl group or) a functional group hydrogen (polyethylene), methyl (polypropylene), carboxyl (poly(acryhc acid)), chlorine (poly(vinyl chloride)), phenyl (polystyrene) hydroxyl (poly(vinyl alcohol)), ester (poly(vinyl acetate)), nitrile (polyacrylonitrile), vinyl (polybutadiene), etc. The functional groups and the molecular weight of the polymers, control thek properties which vary in hydrophobicity, solubiUty characteristics, glass-transition temperature, and crystallinity. [Pg.478]

The glass-transition temperature in amorphous polymers is also sensitive to copolymerization. Generally, T of a random copolymer falls between the glass-transition temperatures of the respective homopolymers. For example, T for solution-polymerized polybutadiene is —that for solution-polymerized polystyrene is -HlOO°C. A commercial solution random copolymer of butadiene and styrene (Firestone s Stereon) shows an intermediate T of —(48). The glass-transition temperature of the random copolymer can sometimes be related simply as follows ... [Pg.183]

This combination of monomers is unique in that the two are very different chemically, and in thek character in a polymer. Polybutadiene homopolymer has a low glass-transition temperature, remaining mbbery as low as —85° C, and is a very nonpolar substance with Htde resistance to hydrocarbon fluids such as oil or gasoline. Polyacrylonitrile, on the other hand, has a glass temperature of about 110°C, and is very polar and resistant to hydrocarbon fluids (see Acrylonitrile polymers). As a result, copolymerization of the two monomers at different ratios provides a wide choice of combinations of properties. In addition to providing the mbbery nature to the copolymer, butadiene also provides residual unsaturation, both in the main chain in the case of 1,4, or in a side chain in the case of 1,2 polymerization. This residual unsaturation is useful as a cure site for vulcanization by sulfur or by peroxides, but is also a weak point for chemical attack, such as oxidation, especially at elevated temperatures. As a result, all commercial NBR products contain small amounts ( 0.5-2.5%) of antioxidant to protect the polymer during its manufacture, storage, and use. [Pg.516]

Prepa.ra.tion, The preparation of amorphous high (99%) 1,2-polybutadiene was first reported iu 1981 (27). The use of a heterocycHc chelating diamine such as dipiperidine ethane iu the polymerization gave an amorphous elastomeric polymer of 99.9% 1,2 units and a glass-transition temperature of +5°C. In a previous description (53,54) of the use of a chelating diamine such as A/A/N(N -tetramethylethylene diamine, an 80% 1,2-polybutadiene with a glass-transition temperature of —30°C was produced. [Pg.532]

Inclusion of double bonds will stiffen the chain at the point of inclusion but at the same time may increase the flexibility of adjacent bonds. The net effect may therefore be to reduce the glass transition temperature and this appears to occur in 1,4-polybutadiene when compared with polyethylene. [Pg.62]

The glass transition temperatures (Tg) of both modified and unmodified PSs were determined by DSC analysis, and thermomechanic analysis was controlled by TMK. The results are given in Table 8. It is seen from Table 8 that the highest glass transition temperature (410 K) was obtained with chlorohydrinated PS and that of the lowest (370 K) with olefinic PS. The lowest glass transition temperature in the alkenylated PS caused to elasticity properties on polybutadien and polyisopren fragments. [Pg.275]

TDI isomers, 210 Tear strength tests, 242-243 TEDA. See Triethylene diamine (TEDA) Telechelic oligomers, 456, 457 copolymerization of, 453-454 Telechelics, from polybutadiene, 456-459 TEM technique, 163-164 Temperature, polyamide shear modulus and, 138. See also /3-transition temperature (7)>) Brill temperature Deblocking temperatures //-transition temperature (Ty) Glass transition temperature (7) ) Heat deflection temperature (HDT) Heat distortion temperature (HDT) High-temperature entries Low-temperature entries Melting temperature (Fm) Modulu s - temperature relationship Thermal entries Tensile strength, 3, 242 TEOS. See Tetraethoxysilane (TEOS)... [Pg.602]

Reactive compatibilization can also be accomplished by co-vulcanization at the interface of the component particles resulting in obliteration of phase boundary. For example, when cA-polybutadiene is blended with SBR (23.5% styrene), the two glass transition temperatures merge into one after vulcanization. Co-vulcanization may take place in two steps, namely generation of a block or graft copolymer during vulcanization at the phase interface and compatibilization of the components by thickening of the interface. However, this can only happen if the temperature of co-vulcanization is above the order-disorder transition and is between the upper and lower critical solution temperature (LCST) of the blend [20]. [Pg.301]

The polybutadienes prepared with these barium t-butoxide-hydroxide/BuLi catalysts are sufficiently stereoregular to undergo crystallization, as measured by DTA ( 8). Since these polymers have a low vinyl content (7%), they also have a low gl ass transition temperature. At a trans-1,4 content of 79%, the Tg is -91°C and multiple endothermic transitions occur at 4°, 20°, and 35°C. However, in copolymers of butadiene (equivalent trans content) and styrene (9 wt.7. styrene), the endothermic transitions are decreased to -4° and 25°C. Relative to the polybutadiene, the glass transition temperature for the copolymer is increased to -82°C. The strain induced crystallization behavior for a SBR of similar structure will be discussed after the introduction of the following new and advanced synthetic rubber. [Pg.82]

Figure 2. Glass transition temperature from DSC in cross-linked polybutadiene as a function of... Figure 2. Glass transition temperature from DSC in cross-linked polybutadiene as a function of...
Figure B8.2.1 shows the fluorescence spectra of DIPHANT in a polybutadiene matrix. The h/lu ratios turned out to be significantly lower than in solution, which means that the internal rotation of the probe is restricted in such a relatively rigid polymer matrix. The fluorescence intensity of the monomer is approximately constant at temperatures ranging from —100 to —20 °C, which indicates that the probe motions are hindered, and then decreases with a concomitant increase in the excimer fluorescence. The onset of probe mobility, detected by the start of the decrease in the monomer intensity and lifetime occurs at about —20 °C, i.e. well above the low-frequency static reference temperature Tg (glass transition temperature) of the polybutadiene sample, which is —91 °C (measured at 1 Hz). This temperature shift shows the strong dependence of the apparent polymer flexibility on the characteristic frequency of the experimental technique. This frequency is the reciprocal of the monomer excited-state... Figure B8.2.1 shows the fluorescence spectra of DIPHANT in a polybutadiene matrix. The h/lu ratios turned out to be significantly lower than in solution, which means that the internal rotation of the probe is restricted in such a relatively rigid polymer matrix. The fluorescence intensity of the monomer is approximately constant at temperatures ranging from —100 to —20 °C, which indicates that the probe motions are hindered, and then decreases with a concomitant increase in the excimer fluorescence. The onset of probe mobility, detected by the start of the decrease in the monomer intensity and lifetime occurs at about —20 °C, i.e. well above the low-frequency static reference temperature Tg (glass transition temperature) of the polybutadiene sample, which is —91 °C (measured at 1 Hz). This temperature shift shows the strong dependence of the apparent polymer flexibility on the characteristic frequency of the experimental technique. This frequency is the reciprocal of the monomer excited-state...
This new development in the microstructural architecture of polybutadiene has opened the door for the preparation of various block copolymers made from the same monomer. For example, one can use this concept to prepare various polybutadiene rubbers in which the chain segment contains various glass transition temperatures, depending on its microstructural arrangements. Similarly, manipulating the polymerization temperature using the same modifier and... [Pg.411]

RESINS (Acrylonitrile-Butadiene-Styrene). Commonly referred to as ABS resins, these materials are thermoplastic resins which are produced by grafting styrene and acrylonitrile onto a diene-rubber backbone. The usually preferred substrate is polybutadiene because of its low glass-transition temperature (approximately —80°C). Where ABS resin is prepared by suspension or mass polymerization methods, stereospedfic diene rubber made by solution polymerization is the preferred diene. Otherwise, the diene used is a high-gel or cross-linked latex made by a hot emulsion process. [Pg.1436]

The thermal stability of poly(vinyl chloride) is improved greatly by the in situ polymerization of butadiene or by reaction with preformed cis-1,4-polybutadiene using a diethyl-aluminum chloride-cobalt compound catalyst system. The improved thermal stability at 3-10% add-on is manifested by greatly reduced discoloration when the modified poly-(vinyl chloride) is compression molded at 200°C in air in the absence of a stabilizer, hydrogen chloride evolution at 180°C is retarded, and the temperature for the onset of HCl evolution and the peak decomposition temperature (DTA) increase, i.e. 260°-280°C and 290°-325° C, respectively, compared with 240°-260°C and 260°-280°C for the unmodified homopolymer, in the absence of stabilizer. The grafting reaction may be carried out on suspension, emulsion, or bulk polymerized poly(vinyl chloride) with little or no change in the glass transition temperature. [Pg.313]

The glass transition temperatures of polyacrylonitrile at +90°C and of polybutadiene at -90°C differ considerably therefore, with an increasing amount of acrylonitrile in the polymer, the Tg temperature of NBR rises together with its brittleness temperature. The comonomer ratio is the single most important recipe variable for the production of acrylonitrile-butadiene rubbers. [Pg.33]


See other pages where Glass transition temperature polybutadiene is mentioned: [Pg.151]    [Pg.523]    [Pg.530]    [Pg.531]    [Pg.532]    [Pg.532]    [Pg.533]    [Pg.291]    [Pg.440]    [Pg.353]    [Pg.395]    [Pg.786]    [Pg.480]    [Pg.88]    [Pg.121]    [Pg.457]    [Pg.462]    [Pg.276]    [Pg.204]    [Pg.287]    [Pg.55]    [Pg.96]    [Pg.218]    [Pg.402]    [Pg.412]    [Pg.419]    [Pg.215]    [Pg.151]    [Pg.1349]    [Pg.2240]    [Pg.238]    [Pg.477]    [Pg.161]    [Pg.100]   
See also in sourсe #XX -- [ Pg.353 ]

See also in sourсe #XX -- [ Pg.2260 ]

See also in sourсe #XX -- [ Pg.210 ]




SEARCH



Polybutadiene glass

Polybutadienes glass transition temperature

Temperature polybutadiene

© 2024 chempedia.info