Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyacrylonitrile melting

The first reported synthesis of acrylonitrile [107-13-1] (qv) and polyacrylonitrile [25014-41-9] (PAN) was in 1894. The polymer received Htde attention for a number of years, until shortly before World War II, because there were no known solvents and the polymer decomposes before reaching its melting point. The first breakthrough in developing solvents for PAN occurred at I. G. Farbenindustrie where fibers made from the polymer were dissolved in aqueous solutions of quaternary ammonium compounds, such as ben2ylpyridinium chloride, or of metal salts, such as lithium bromide, sodium thiocyanate, and aluminum perchlorate. Early interest in acrylonitrile polymers (qv), however, was based primarily on its use in synthetic mbber (see Elastomers, synthetic). [Pg.274]

Because the polymer degrades before melting, polyacrylonitrile is commonly formed into fibers via a wet spinning process. The precursor is actually a copolymer of acrylonitrile and other monomer(s) which are added to control the oxidation rate and lower the glass transition temperature of the material. Common copolymers include vinyl acetate, methyl acrylate, methyl methacrylate, acrylic acid, itaconic acid, and methacrylic acid [1,2]. [Pg.120]

Polydithiazoles Polyoxadiazoles Polyamidines Pyrolyzed polyacrylonitrile Polyvinyl isocyanate ladder polymer Polyamide-imide Polysulfone Decompose at 525°C (977°F) soluble in concentrated sulfuric acid. Decompose at 450-500°C (842-932°F) can be made into fiber or film. Stable to oxidation up to 500°C (932°F) can make flexible elastomer. Stable above 900°C (1625°F) fiber resists abrasion with low tenacity. Soluble polymer that decomposes at 385°C (725°F) prepolymer melts above 405° C (76l.°F). Service temperatures up to 288° C (550°F) amenable to fabrication. Thermoplastic use temperature —102°C (—152°F) to greater than 150° C (302°F) acid and base resistant. [Pg.320]

Polyacrylonitrile decomposes before it melts => melt spinning cannot be used for the production of fibers. [Pg.525]

Wet spinning. This technique is characterized by spinning a filtered viscous polymer mass, dissolved in a suitable solvent, into contact with a precipitation or coagulation bath. Polyacrylonitrile, polyvinyl acetate, cellulose acetate, and other materials are processed by this method. Thermal requirements for pigments are less stringent than for melt spinning but pigments are expected to be fast to the solvents and chemicals used. [Pg.177]

Polymerization of acrylonitrile adsorbed on polyacrylonitrile" An intimate mixture of polyacrylonitrile solvated by its monomer is obtained if one melts acrylonitrile crystals which have been subjected to high energy radiation at low temperatures. The polymer forms under irradiation within the crystal lattice and upon melting, a gel-like phase is obtained in which the individual polymer molecules do not aggregate, presumably because most of the CN groups are then associated in pairs with the -CN groups of the monomer. Such a polyacrylonitrile solvated by its monomer should indeed be an ideal medium for the matrix effect to operate. [Pg.247]

Semicarbon or oxidized polyacrylonitrile fibers, produced by thermo-oxidative stabilization of either viscose or acrylic fibers, have excellent heat resistance, do not melt or burn, and have excellent resistance to molten metal splashes. Panox (RK Textiles), Panotex (Universal Carbon Fibers), and Pyron (Zoltek Corp) are some examples, produced from acrylic fibers. [Pg.756]

Pure acrylonitrile may polymerize at room temperature to polyacrylonitrile (PAN), a compound that, unlike polyamides and polyesters, does not melt at elevated temperatures but only softens and finally discolors and decomposes. Nor is it soluble in inexpensive low-boiling organic solvents. Because fibers made from it resist the dyeing operations commonly used in the textile industry, the usual practice is to modify it by copolymerization with other monomers, for example, vinyl acetate, styrene, acrylic esters, acrylamide, or vinyl pyridine in amounts up to 15 percent of the total weight (beyond which the final product may not be termed an acrylic fiber). The choice of modifier depends on the characteristics that a given manufacturer considers important in a fiber, the availability and cost of the raw materials in the manufacturer s particular area of production, and the patent situation. [Pg.467]

Hollow membrane fibers are required for many medical application, e.g. for disposable dialysis. Such fibers are made by usmg an appropriate fiber spinning technique with a special inlet in the center of the spinneret through which the fiber core forming medium (liquid or gas) is injected. The membrane material may be made by melt-spinning, chemical activated spinning or phase separation. The thin wall (15-500 xm thickness) acts as a semi-permeable membrane. Commonly, such fibers are made of cellulose-based membrane materials such as cellulose nitrate, or polyacrylonitrile, polymethylmethacrylate, polyamide and polypropylene (van Stone, 1985). [Pg.100]

Cellulose di- and triacetate fibres (CA, CT) as well as acrylic fibres (polyacrylonitrile, PAN) are all soluble in the zinc chloride-iodine reagent. An initial differentiation is made using the acetone test on a watchglass only CA and CT fibres dissolve (evidenced by a cloudy evaporation residue). Differentiation between CA and CT fibres CA dissolves in Frott6 II reagent (see Table 8.1), CT only swells. Results are similar in zinc chloride/formic acid, but with a less distinct difference (CT swells more markedly). PAN fibres dissolve in cold concentrated nitric acid and in dimethylformamide at 100 °C. They swell in boiling 85 % formic acid and decompose at about 280 °C without melting. [Pg.153]

The AN/MA copolymer mentioned earlier is of interest technologically because of the very good barrier properties exhibited by polymers containing acrylonitrile—compare the D for this copolymer with those for polyethylene on the left. However, because pure polyacrylonitrile is essentially impossible to melt process, it is necessary to copolymerize with other monomers to obtain processable materials with the result being a sacrifice of barrier properties. [Pg.262]

In polyacrylonitrile appreciable electrostatic forces occur between the dipoles of adjacent nitrile groups on the same polymer molecule. This restricts the bond rotation and leads to a stiff, rodKke structme of the polymer chain. As a result, polyacrylonitrile has a very high crystalline melting point (317°C) and is soluble in only a few solvents, such as dimethylformamide and dimethylacetamide, and in concentrated aqueous solutions of inorganic salts, such as calcium thiocyanate, sodium perchlorate, and zinc chloride. Polyacrylonitrile cannot be melt processed because its decomposition temperature is close to the melting point. Fibers are therefore spun from solution by either wet or dry spinning (see Chapter 2). [Pg.423]

Flammability Tests Burning wool smells like burnt horn, burning silk smells like burnt egg-white, and burning cellulose fiber smells like burnt paper. Polyamide and polyester fibers melt before they burn polyacrylonitrile fibers, upon burning, leave a residue of hard, black spherical particles. On heating the dry fibers in a test tube, wool, silk, and polyamides develop alkaline vapors, while cotton, bast fibers, and regenerated cellulose (rayon) develop acidic vapors (test with moistened universal indicator paper). [Pg.75]


See other pages where Polyacrylonitrile melting is mentioned: [Pg.68]    [Pg.54]    [Pg.915]    [Pg.77]    [Pg.77]    [Pg.309]    [Pg.183]    [Pg.178]    [Pg.178]    [Pg.243]    [Pg.28]    [Pg.122]    [Pg.879]    [Pg.439]    [Pg.420]    [Pg.59]    [Pg.879]    [Pg.130]    [Pg.130]    [Pg.131]    [Pg.296]    [Pg.297]    [Pg.213]    [Pg.123]    [Pg.130]    [Pg.130]    [Pg.131]    [Pg.143]    [Pg.737]    [Pg.298]    [Pg.1023]   
See also in sourсe #XX -- [ Pg.852 ]




SEARCH



Polyacrylonitril

Polyacrylonitrile

Polyacrylonitriles

© 2024 chempedia.info