Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly -type polymers

Several studies have demonstrated the successful incoriDoration of [60]fullerene into polymeric stmctures by following two general concepts (i) in-chain addition, so called pearl necklace type polymers or (ii) on-chain addition pendant polymers. Pendant copolymers emerge predominantly from the controlled mono- and multiple functionalization of the fullerene core with different amine-, azide-, ethylene propylene terjDolymer, polystyrene, poly(oxyethylene) and poly(oxypropylene) precursors [63,64,65,66,62 and 66]. On the other hand, (-CggPd-) polymers of the pearl necklace type were fonned via the periodic linkage of [60]fullerene and Pd monomer units after their initial reaction with thep-xy y ene diradical [69,70 and 71]. [Pg.2416]

Figure 4c also describes the spontaneous polymerisation ofpara- s.yX en.e diradicals on the surface of soHd particles dispersed in a gas phase that contains this reactive monomer (16) (see XylylenePOLYMERS). The poly -xylylene) polymer produced forms a continuous capsule sheU that is highly impermeable to transport of many penetrants including water. This is an expensive encapsulation process, but it has produced capsules with impressive barrier properties. This process is a Type B encapsulation process, but is included here for the sake of completeness. [Pg.320]

Thickeners. Thickeners are added to remover formulas to increase the viscosity which allows the remover to cling to vertical surfaces. Natural and synthetic polymers are used as thickeners. They are generally dispersed and then caused to swell by the addition of a protic solvent or by adjusting the pH of the remover. When the polymer swells, it causes the viscosity of the mixture to increase. Viscosity is controlled by the amount of thickener added. Common thickeners used in organic removers include hydroxypropylmethylceUulose [9004-65-3], hydroxypropylceUulose [9004-64-2], hydroxyethyl cellulose, and poly(acryHc acid) [9003-01-4]. Thickeners used in aqueous removers include acryHc polymers and latex-type polymers. Some thickeners are not stable in very acidic or very basic environments, so careful selection is important. [Pg.550]

Blending of ABS with an acrylic material such as poly(methyl methacrylate) can in some cases allow a matching of the refractive indices of the rubbery and glassy phases and providing that there is a low level of contaminating material such as soap and an absence of insoluble additives a reasonable transparent ABS-type polymer may be obtained. More sophisticated are the complex terpolymers and blends of the MBS type considered below. Seldom used on their own, they are primarily of use as impact modifiers for unplasticised PVC. [Pg.446]

The GBR resin works well for nonionic and certain ionic polymers such as various native and derivatized starches, including sodium carboxymethylcel-lulose, methylcellulose, dextrans, carrageenans, hydroxypropyl methylcellu-lose, cellulose sulfate, and pullulans. GBR columns can be used in virtually any solvent or mixture of solvents from hexane to 1 M NaOH as long as they are miscible. Using sulfonated PDVB gels, mixtures of methanol and 0.1 M Na acetate will run many polar ionic-type polymers such as poly-2-acrylamido-2-methyl-l-propanesulfonic acid, polystyrene sulfonic acids, and poly aniline/ polystyrene sulfonic acid. Sulfonated columns can also be used with water glacial acetic acid mixtures, typically 90/10 (v/v). Polyacrylic acids run well on sulfonated gels in 0.2 M NaAc, pH 7.75. [Pg.400]

AB-type polycondensations, 330 AB-type polymers, 135 Accelerated weathering tests, 245 Acceptor-catalytic polyesterification, 75 4-Acetoxy benzoic acid, poly esterification of, 74... [Pg.575]

There are two types of multicomponent mixtures which occur In polymer phase equilibrium calculations solutions with multiple solvents or pol ers and solutions containing poly-disperse polymers. We will address these situations In turn. [Pg.197]

Before analyzing in detail the conformational behaviour of y9-peptides, it is instructive to look back into the origins and the context of this discovery. The possi-bihty that a peptide chain consisting exclusively of y9-amino acid residues may adopt a defined secondary structure was raised in a long series of studies which began some 40 years ago, on y9-amino acid homopolymers (nylon-3 type polymers), such as poly(/9-alanine) 3 [14, 15], poly(y9-aminobutanoic acid) 4 [16-18], poly(a-dialkyl-/9-aminopropanoic acid) 5 ]19], poly(y9-L-aspartic acid) 6 ]20, 21], and poly-(a-alkyl-/9-L-aspartate) 7 [22-36] (Fig. 2.1). [Pg.35]

Figure 2. Representative optical micrographs of poly-HEMA cross-linked with EDMA. (a) and (b) represent the gel-type polymer produced by suspension co-polymerization in the dry and swollen state, respectively, (c) and (d) represent the macroreticular polymer produced by suspension co-polymerization in the presence of a porogen (toluene), in the dry and swollen (vide infra) state, respeetively [13], (Reprinted from Ref [15], 1996, with permission from Elsevier.)... Figure 2. Representative optical micrographs of poly-HEMA cross-linked with EDMA. (a) and (b) represent the gel-type polymer produced by suspension co-polymerization in the dry and swollen state, respectively, (c) and (d) represent the macroreticular polymer produced by suspension co-polymerization in the presence of a porogen (toluene), in the dry and swollen (vide infra) state, respeetively [13], (Reprinted from Ref [15], 1996, with permission from Elsevier.)...
Some other degradable (i.e., nonvinyl-type) polymers have been reported as components for amphiphilic block copolymers. For example, Hsiue reported the synthesis of a block copolymer of poly(2-ethyl oxazoline) and PLA by ROP. They reported the use of ABA-type triblock copolymers as pH-responsive polymer... [Pg.76]

Many kinds of nonbiodegradable vinyl-type hydrophilic polymers were also used in combination with aliphatic polyesters to prepare amphiphilic block copolymers. Two typical examples of the vinyl-polymers used are poly(/V-isopropylacrylamide) (PNIPAAm) [149-152] and poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) [153]. PNIPAAm is well known as a temperature-responsive polymer and has been used in biomedicine to provide smart materials. Temperature-responsive nanoparticles or polymer micelles could be prepared using PNIPAAm-6-PLA block copolymers [149-152]. PMPC is also a well-known biocompatible polymer that suppresses protein adsorption and platelet adhesion, and has been used as the hydrophilic outer shell of polymer micelles consisting of a block copolymer of PMPC -co-PLA [153]. Many other vinyl-type polymers used for PLA-based amphiphilic block copolymers were also introduced in a recent review [16]. [Pg.76]

Poly(enaminoamide)-type polymers (192) were obtained in 89-97% yields when 1 1 mixtures of diamine (4,4 -methyIenediphenyldiamine,p-phenylenediamine, or o-phenylenediamine) and EMME were heated in the presence of a solvent (N-methylpyrrolidone, trifluoroacetic acid, or m-cresol) or in the melt at 155-195°C under nitrogen for 2-12 hr (78MI2). [Pg.59]

Gel polymer lithium-ion batteries replace the conventional liquid electrolytes with an advanced polymer electrolyte membrane. These cells can be packed in lightweight plastic packages as they do not have any free electrolytes and they can be fabricated in any desired shape and size. They are now increasingly becoming an alternative to liquid-electrolyte lithium-ion batteries, and several battery manufacturers. such as Sanyo. Sony, and Panasonic have started commercial production.Song et al. have recently reviewed the present state of gel-type polymer electrolyte technology for lithium-ion batteries. They focused on four plasticized systems, which have received particular attention from a practical viewpoint, i.e.. poly(ethylene oxide) (PEO). poly (acrylonitrile) (PAN). ° poly (methyl methacrylate) (PMMA). - and poly(vinylidene fluoride) (PVdF) based electrolytes. ... [Pg.202]

A similar method of hydrolysis was described for poly( vinyl alcohol) used as a template. In this case, T was -CH2-CH- and, after hydrolysis, poly(vinyl alcohol) and polyacrylic or polymethacrylic acid were obtained. The hydrolyzed product gives the color reaction with I2 in the presence of H3BO3 - specific to poly(vinyl alcohol). The second product of hydrolysis, after esterification by diazomethane, was identified as polyfmethyl methacrylate) by NMR and IR spectrometry. Hydrolysis was also applied in the case of ladder-type polymers obtained by polymerization of mutliallyl monomers. The polymerization should result in polymer consisting, at least partly, ladder-type blocks ... [Pg.144]

Plexiglas A Trademark of Rohm Haas Company for thermoplastic, poly (methyl methacrylate) - type polymers... [Pg.124]

Further intramolecular reaction of the poly(phenylene)-type polymer leads to more condensed polymers. Tour synthesized polymer 84 bearing a carbonyl moiety and a protected amino group in the phenylene rings by the reaction of boronate 83 and a dibromobenzene monomer. The polymerization takes place in the presence of a palladium catalyst in DME-H2O at 85 °C to give 84 that showed 3/n = 9850-28400 = 1.85-3.70) in 63-97% yields. The resulting polymer 84 is... [Pg.666]

We prepared a series of pendant-type polymer-metal complexes having a uniform structure by the substitution reaction between a polymer ligand and a Co(III) or Cr(III) chelate, the chelate being inert in ligand-substitution reactions1,2 A poly-mer-Co(III) complex, e.g. ci s-[Co(en)2(PVP)Cl]Cl2 (en=ethylenediamine, PVP= poly(4-vinylpyridine)) i 7, was prepared as follows11 ... [Pg.7]

An alternative polymerization mechanism and polymer architecture has been proposed by Kirchhoff [1, 2, 3], Tan and Arnold [77], By this mechanism, polybenzocyclobutenes which do not contain reactive sites of unsaturation are proposed to polymerize by the 1,4 addition of the o-quinodimethane intermediates to give a substantially linear poly(o-xylylene) structure. Since the monomers all contain at least two benzocyclobutene units the net result of this reaction will to a first approximation be a ladder type polymer as shown in Fig. 17. The formation of a true ladder polymer however would require that all... [Pg.20]


See other pages where Poly -type polymers is mentioned: [Pg.154]    [Pg.573]    [Pg.601]    [Pg.602]    [Pg.288]    [Pg.348]    [Pg.804]    [Pg.930]    [Pg.6]    [Pg.98]    [Pg.99]    [Pg.179]    [Pg.633]    [Pg.122]    [Pg.205]    [Pg.464]    [Pg.199]    [Pg.202]    [Pg.56]    [Pg.63]    [Pg.54]    [Pg.221]    [Pg.74]    [Pg.989]    [Pg.3]    [Pg.85]    [Pg.238]    [Pg.154]    [Pg.15]    [Pg.204]    [Pg.217]    [Pg.671]   
See also in sourсe #XX -- [ Pg.671 ]




SEARCH



Direct poly -type polymers

Ladder poly polymer types

Poly polymers

Poly(arylene ether)-Type Polymers

Polymer poly (p-type

Polymers types

Polymers, liquid crystalline poly type

© 2024 chempedia.info