Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly thermoplastic elastomers

Gun Propellents. Low sensitivity gun propeUants, often referred to as LOVA (low vulnerabUity ammunition), use RDX or HMX as the principal energy components, and desensitizing binders such as ceUulose acetate butyrate or thermoplastic elastomers (TPE) including poly acetal—polyurethane block copolymers, polystyrene—polyacrjiate copolymers, and glycidyl azide polymers (GAP) to provide the required mechanical... [Pg.40]

Noncrystalline aromatic polycarbonates (qv) and polyesters (polyarylates) and alloys of polycarbonate with other thermoplastics are considered elsewhere, as are aHphatic polyesters derived from natural or biological sources such as poly(3-hydroxybutyrate), poly(glycoHde), or poly(lactide) these, too, are separately covered (see Polymers, environmentally degradable Sutures). Thermoplastic elastomers derived from poly(ester—ether) block copolymers such as PBT/PTMEG-T [82662-36-0] and known by commercial names such as Hytrel and Riteflex are included here in the section on poly(butylene terephthalate). Specific polymers are dealt with largely in order of volume, which puts PET first by virtue of its enormous market volume in bottie resin. [Pg.292]

Properties have been determined for a series of block copolymers based on poly[3,3-bis(ethoxymethyl)oxetane] and poly [3,3-bis(methoxymethyl)oxetane]- (9-tetrahydrofuran. The block copolymers had properties suggestive of a thermoplastic elastomer (308). POX was a good main chain for a weU-developed smectic Hquid crystalline state when cyano- or fluorine-substituted biphenyls were used as mesogenic groups attached through a four-methylene spacer (309,310). Other side-chain Hquid crystalline polyoxetanes were observed with a spacer-separated azo moiety (311) and with laterally attached mesogenic groups (312). [Pg.368]

Thermoplastic elastomers are often multiphase compositions in which the phases are intimately dispersed. In many cases, the phases are chemically bonded by block or graft copolymerization. In others, a fine dispersion is apparentiy sufficient. In these multiphase systems, at least one phase consists of a material that is hard at room temperature but becomes fluid upon heating. Another phase consists of a softer material that is mbberlike at RT. A simple stmcture is an A—B—A block copolymer, where A is a hard phase and B an elastomer, eg, poly(styrene- -elastomer- -styrene). [Pg.11]

In Chapters 3 and 11 reference was made to thermoplastic elastomers of the triblock type. The most well known consist of a block of butadiene units joined at each end to a block of styrene units. At room temperature the styrene blocks congregate into glassy domains which act effectively to link the butadiene segments into a rubbery network. Above the Tg of the polystyrene these domains disappear and the polymer begins to flow like a thermoplastic. Because of the relatively low Tg of the short polystyrene blocks such rubbers have very limited heat resistance. Whilst in principle it may be possible to use end-blocks with a higher Tg an alternative approach is to use a block copolymer in which one of the blocks is capable of crystallisation and with a well above room temperature. Using what may be considered to be an extension of the chemical technology of poly(ethylene terephthalate) this approach has led to the availability of thermoplastic polyester elastomers (Hytrel—Du Pont Amitel—Akzo). [Pg.737]

Poly(pivalolactone) 739 Table 25.12 Propenies of Hytrel-type thermoplastic elastomers... [Pg.739]

Liquid crystal polyesters Polyester Thermoplastic Elastomers Poly(pivalolactone)... [Pg.924]

Partially vulcanized EPDM/Poly- propylene blend" Completely vulcanized EPDM/Poly- propylene blend Neoprene vulcanizate Ester-ether copolymer thermoplastic elastomer ... [Pg.175]

Compatibilization along with dynamic vulcanization techniques have been used in thermoplastic elastomer blends of poly(butylene terephthalate) and ethylene propylene diene rubber by Moffett and Dekkers [28]. In situ formation of graft copolymer can be obtained by the use of suitably functionalized rubbers. By the usage of conventional vulcanizing agents for EPDM, the dynamic vulcanization of the blend can be achieved. The optimum effect of compatibilization along with dynamic vulcanization can be obtained only when the compatibilization is done before the rubber phase is dispersed. [Pg.640]

Polyester-Polyether Thermoplastic Elastomers Dimethyl Terephthalate/l,4-Butanediol/Dihydroxy-Poly(oxytetramethylene)... [Pg.108]

Poly(poly(alkylene terephthalate)-Woc -poly(oxyalkylene)) thermoplastic elastomers are prepared by the bulk polycondensation of dimethyl terephthalate with a mixture of 1,4-alkanediol and hydroxy-terminated poly(oxyalkylene) in... [Pg.108]

Table 17 provides a list of various polysiloxane-poly(aryl ether) copolymers investigated. Depending on the type, nature and the level of the hard blocks incorporated, physical, thermal and mechanical properties of these materials can be varied over a very wide range from that of thermoplastic elastomers to rubber modified engineering thermoplastics. Resultant copolymers are processable by solution techniques and in some cases by melt processing 22,244). [Pg.43]

Varshney S.K. et al.. Synthesis of ABA type thermoplastic elastomers based on poly acrylates. Macromolecules, 32, 235, 1999. [Pg.154]

Cao X. and Faust R., Polyisobutylene based thermoplastic elastomer 5. Poly(styrene-b-isobutylene-b-styrene) tri-block copolymers by coupling of living poly(styrene-b-isobutylene) di-block copolymers. Macromolecules, 32, 5487, 1999. [Pg.154]

Tsunogae Y. and Kennedy J.P., Thermoplastic elastomers by sequential monomer addition. VI. Poly(p-methylstyrene-b-isobutylene-b-/7-methylstyrene), Polym. Bull., 31, 1436, 1993. [Pg.155]

Kricheldorf H.R., Wollheim T., Koning C.E., Werumeus B.H.G., and Altstadt V. Thermoplastic elastomers 1. Poly(ether-ester-imide)s based on 1,4-diaminobutane, trimeUitic anhydride, 1,4-dihydroxybutane and poly(tetramethylene oxide) diols, Polymer, 42, 6699, 2001. [Pg.155]

Chattopadhyay S., Chaki T.K., and Bhowmick A.K., New thermoplastic elastomers from poly(ethyle-neoctene) (engage), poly(ethylene-vinyl acetate) and low-density polyethylene by electron beam technology structural characterization and mechanical properties. Rubber Chem. TechnoL, 74, 815, 2001. Roy Choudhury N. and Dutta N.K., Thermoplastic elastomeric natural rubber-polypropylene blends with reference to interaction between the components. Advances in Polymer Blends and Alloys Technology, Vol. 5 (K. Finlayson, ed.), Technomic Publishers, Pensylvania, 1994, 161. [Pg.156]

Papke N. and Kargar-Kocsis J., Thermoplastic elastomer based on compatibilised poly(ethyleneterphtha-late) blend Effect of rubber type and dynamic curing. Polymer, 42, 1109, 2001. [Pg.156]

Jacob S., Majoros I., and Kennedy J.P., Novel thermoplastic elastomers Star-blocks consisting of eight poly(styrene-b-isobutylene) arms radiating from a calex[8]arenecore. Rubber Chem. TechnoL, 71, 708, 1998. [Pg.157]

Veenstra H., Hoogvfiet R.M., Norder B., De B., and Abe P. Microphase separation and rheology of a semicrystalUne poly(ether-ester) multiblock copolymer, J. Polym. Sci. B. Polym Phys., 36, 1795, 1998. Garbrieelse W., SoUman M., and Dijkstra K., Microstmcture and phase behaviour of block copolyfether ester) thermoplastic elastomers. Macromolecules, 34, 1685, 2001. [Pg.159]

Zhu L.L. and Wegner G. The morphology of semicrystalUne segmented poly(ether ester) thermoplastic elastomers, Macromol. Chem., 182, 3625, 1981. [Pg.159]

Puskas, J.E., Pattern, W.E., Wetmore, P.M., and Krukonis, A. Multiarm-star polyisobutylene-polystyrene thermoplastic elastomers from a novel multifunctional initiator, Polym. Mater. Set Eng., 82,42 3, 1999. Brister, L.B., Puskas, J.E., and Tzaras, E. Star-branched PIB/poly(p-t-bu-Styrene) block copolymers from a novel epoxide initiator, Polym. Prepr., 40, 141-142, 1999. [Pg.216]

Fakirov S, Fakirov C, Fischer EW, and Stamm M. Deformation behaviour of poly(ether ester) thermoplastic elastomers as revealed by SAXS. Polymer, 1991, 32, 1173-1180. [Pg.247]

The Material of the Example. Poly(ether ester) (PEE) materials are thermoplastic elastomers. Fibers made from this class of multiblock copolymers are commercially available as Sympatex . Axle sleeves for automotive applications or gaskets are traded as Arnitel or Hytrel . Polyether blocks form the soft phase (matrix). The polyester forms the hard domains which provide physical cross-linking of the chains. This nanostructure is the reason for the rubbery nature of the material. [Pg.172]

Polyesters, such as microbially produced poly[(P)-3-hydroxybutyric acid] [poly(3HB)], other poly[(P)-hydroxyalkanoic acids] [poly(HA)] and related biosynthetic or chemosynthetic polyesters are a class of polymers that have potential applications as thermoplastic elastomers. In contrast to poly(ethylene) and similar polymers with saturated, non-functionalized carbon backbones, poly(HA) can be biodegraded to water, methane, and/or carbon dioxide. This review provides an overview of the microbiology, biochemistry and molecular biology of poly(HA) biodegradation. In particular, the properties of extracellular and intracellular poly(HA) hydrolyzing enzymes [poly(HA) depolymerases] are described. [Pg.289]


See other pages where Poly thermoplastic elastomers is mentioned: [Pg.329]    [Pg.138]    [Pg.289]    [Pg.335]    [Pg.11]    [Pg.12]    [Pg.261]    [Pg.587]    [Pg.739]    [Pg.26]    [Pg.40]    [Pg.30]    [Pg.49]    [Pg.44]    [Pg.225]    [Pg.229]    [Pg.354]    [Pg.154]    [Pg.120]    [Pg.143]    [Pg.52]    [Pg.20]    [Pg.315]    [Pg.21]   


SEARCH



Poly elastomers

Thermoplastic Poly

Thermoplastic blends with poly condensation elastomers

Thermoplastic blends with poly(ether ester) elastomers

Thermoplastic elastomers

© 2024 chempedia.info