Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly -1 polyisobutylene

Synthetic oils have been classified by ASTM into synthetic hydrocarbons, organic esters, others, and blends. Synthetic oils may contain the following compounds diaLkylben2enes, poly(a-olefins) polyisobutylene, cycloaUphatics, dibasic acid esters, polyol esters, phosphate esters, siUcate esters, polyglycols, polyphenyl ethers, siUcones, chlorofluorocarbon polymers, and perfluoroalkyl polyethers. [Pg.368]

Polymers account for about 3—4% of the total butylene consumption and about 30% of nonfuels use. Homopolymerization of butylene isomers is relatively unimportant commercially. Only stereoregular poly(l-butene) [9003-29-6] and a small volume of polyisobutylene [25038-49-7] are produced in this manner. High molecular weight polyisobutylenes have found limited use because they cannot be vulcanized. To overcome this deficiency a butyl mbber copolymer of isobutylene with isoprene has been developed. Low molecular weight viscous Hquid polymers of isobutylene are not manufactured because of the high price of purified isobutylene. Copolymerization from relatively inexpensive refinery butane—butylene fractions containing all the butylene isomers yields a range of viscous polymers that satisfy most commercial needs (see Olefin polymers Elastomers, synthetic-butylrubber). [Pg.374]

In principle, A can be any polymer normally regarded as a hard thermoplastic, eg, polystyrene, poly(methyl methacrylate), or polypropylene, and B can be any polymer normally regarded as elastomeric, eg, polyisoprene, polybutadiene, polyisobutylene, or polydimethylsiloxane (Table 2). [Pg.11]

Polyisobutylene 1.15 " Polyethylene butylene 7.7" Polyethylene 7.65 Polyethylene/propylene 7.35 Poly dimethyl siloxane... [Pg.719]

Poly(ethylene terephtlhalate) Phenol-formaldehyde Polyimide Polyisobutylene Poly(methyl methacrylate), acrylic Poly-4-methylpentene-1 Polyoxymethylene polyformaldehyde, acetal Polypropylene Polyphenylene ether Polyphenylene oxide Poly(phenylene sulphide) Poly(phenylene sulphone) Polystyrene Polysulfone Polytetrafluoroethylene Polyurethane Poly(vinyl acetate) Poly(vinyl alcohol) Poly(vinyl butyral) Poly(vinyl chloride) Poly(vinylidene chloride) Poly(vinylidene fluoride) Poly(vinyl formal) Polyvinylcarbazole Styrene Acrylonitrile Styrene butadiene rubber Styrene-butadiene-styrene Urea-formaldehyde Unsaturated polyester... [Pg.434]

Bond strength data for four multilayered materials is shown in Table V. In each case the data is for the bond between the food-contacting layer and its adjacent layer. In Pouch 1, it is the bond between ethylene-butene copolymer and aluminum foil in Pouch 2 between ethylene-butene copolymer—polyisobutylene blend and aluminum foil in Pouch 3 between ethylene-butene copolymer and polyiminocaproyl and in Pouch 4 between ethylene-butene copolymer and poly(ethylene terephthalate). Bond strength increased in the four multilayered materials after the irradiation treatment. [Pg.99]

Cao X. and Faust R., Polyisobutylene based thermoplastic elastomer 5. Poly(styrene-b-isobutylene-b-styrene) tri-block copolymers by coupling of living poly(styrene-b-isobutylene) di-block copolymers. Macromolecules, 32, 5487, 1999. [Pg.154]

Walch E. and Caymans R.J., Synthesis and properties of poly(butylenes terephthalate)-b-polyisobutylene segmented block copolymers, Polymer, 35, 636, 1994. [Pg.155]

Among the many unusual properties that the arborescent architecture leads to, most notable is the discovery that block copolymers with a high MW dendritic (arborescent) polyisobutylene core and poly(para-methylstyrene) end blocks can manifest themselves either as a rubber, or as a plastic, depending on their environment (Figures 7.16 and 7.17). The behavior is thermally irreversible. [Pg.212]

Puskas, J.E., Pattern, W.E., Wetmore, P.M., and Krukonis, A. Multiarm-star polyisobutylene-polystyrene thermoplastic elastomers from a novel multifunctional initiator, Polym. Mater. Set Eng., 82,42 3, 1999. Brister, L.B., Puskas, J.E., and Tzaras, E. Star-branched PIB/poly(p-t-bu-Styrene) block copolymers from a novel epoxide initiator, Polym. Prepr., 40, 141-142, 1999. [Pg.216]

FIGURE 20.10 (a,b) Phase images of cryo-ultramicrotomed surfaces of triblock copolymer styrene and ethylene-butylene (SEES) samples of neat material and loaded with oil (40 wt%), respectively. (c,d) Phase images of film of triblock copolymer poly(methyl methacrylate-polyisobutylene-poly(methyl methacrylate) (PMMA-PIB-PMMA) immediately after spin-casting and after 3 h annealing at 100°C, respectively. Inserts in the top left and right comers of the images show power spectra with the value stmctural parameter of microphase separation. [Pg.568]

When X = Y, as in polyethylene, poly-(tetrafluoroethylene), polyisobutylene, and poly -(vinylidene chloride), the polymers are highly crystalline products with sharply definable melting points (except for polyisobutylene, which crystallizes readily on stretching but with difficulty on cooling). Oriented specimens of high strength may be obtained, exactly as in the crystalline condensation polymers. [Pg.56]

The head-to-tail arrangement in poly-(vinyl alcohol) is further confirmed by its X-ray diffraction pattern in the crystalline state. Likewise, analysis of the X-ray diffraction of crystalline poly-(vinylidene chloride), (—CH2—CCI2—)x, and of crystalline (stretched) polyisobutylene, [—CH2—C(CH3)2—]x, shows the units to be arranged in these cases also in the expected head-to-tail forms. [Pg.237]

The results of intrinsic viscosity measurements for four polymer-solvent systems made at the -temperature of each are shown in Fig. 141. The four systems and their -temperatures are polyisobutylene in benzene at 24°C, polystyrene in cyclohexane at 34°C, poly-(di-methylsiloxane) in methyl ethyl ketone at 20°C, and cellulose tricapry-late in 7-phenylpropyl alcohol at 48°C. In each case a series of poly-... [Pg.613]

Thus the quantity on the left evaluated for a series of polymer fractions differing only in chain length should be independent of M. Results shown in Table XLII for fractions of poly-(methyl methacry-late) and of polyisobutylene covering unusually wide ranges confirm this prediction within experimental error. It is borne out also by less extensive results of sedimentation measurements on several other systems. Introduction of the values of v, p, and rjo enables... [Pg.627]

Polyisobutylene Cellulose acetate Poly(ethyl methacrylate) Poly(butyl methacrylate)... [Pg.27]

Synthesis and Characterization of and Drug Release from Poly(A Ar-dimethylacrylamide)-l-polyisobutylene... [Pg.194]

In the previous paper (7) we have described the synthesis, characterization, and certain diffusional characteristics of poly(N V-methylacrylamide)-l -polyisobutylene amphiphilic networks exhibiting a relatively high degree of swelling in both water and n-heptane. It was of interest to prepare further neutral amphiphilic networks of lower water swelling for sustained drug delivery systems. One candidate for this... [Pg.203]


See other pages where Poly -1 polyisobutylene is mentioned: [Pg.245]    [Pg.430]    [Pg.296]    [Pg.463]    [Pg.481]    [Pg.481]    [Pg.229]    [Pg.3]    [Pg.5]    [Pg.14]    [Pg.17]    [Pg.20]    [Pg.8]    [Pg.568]    [Pg.860]    [Pg.881]    [Pg.248]    [Pg.618]    [Pg.619]    [Pg.194]    [Pg.195]    [Pg.197]    [Pg.199]    [Pg.201]    [Pg.205]    [Pg.207]    [Pg.209]    [Pg.211]    [Pg.300]   
See also in sourсe #XX -- [ Pg.34 , Pg.138 , Pg.140 , Pg.385 , Pg.389 ]




SEARCH



Polyisobutylene

Polyisobutylenes

© 2024 chempedia.info