Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly modified catalysts

There have been other modified catalyst systems used in conjunction with CO2 for recycling purposes. Prominent examples include the use of SCCO2 with ionic liquids (23) in biphasic systems and SCCO2 with poly(ethylene glycol) in biphasic (24) and reversible monophasic (25) systems. [Pg.400]

The copolymerization of internal olefins has received little attention, probably due to the lack of catalytic activity of the systems discussed so far. Only results concerning (Z)-2-butene have been reported. Using the Me-Duphos-modified catalyst 86 (Scheme 8.16), a poly]l-oxo-2-methyl-l,4-butanediyl] (Scheme 8.18) formed with low molecular weight (mean oligomerization degree 7) [32]. [Pg.297]

A modified ZSM-5 catalyst has a unique shape-selective property for producing -ethyltoluene [622-96-8] selectively by the alkylation of toluene [108-88-3] with ethylene (54). j )-Ethyltoluene is an intermediate in the production of poly -methylstyrene) [24936-41-2] (PPMS), which is reported to have... [Pg.49]

Pyrotechnic mixtures may also contain additional components that are added to modify the bum rate, enhance the pyrotechnic effect, or serve as a binder to maintain the homogeneity of the blended mixture and provide mechanical strength when the composition is pressed or consoHdated into a tube or other container. These additional components may also function as oxidizers or fuels in the composition, and it can be anticipated that the heat output, bum rate, and ignition sensitivity may all be affected by the addition of another component to a pyrotechnic composition. An example of an additional component is the use of a catalyst, such as iron oxide, to enhance the decomposition rate of ammonium perchlorate. Diatomaceous earth or coarse sawdust may be used to slow up the bum rate of a composition, or magnesium carbonate (an acid neutralizer) may be added to help stabilize mixtures that contain an acid-sensitive component such as potassium chlorate. Binders include such materials as dextrin (partially hydrolyzed starch), various gums, and assorted polymers such as poly(vinyl alcohol), epoxies, and polyesters. Polybutadiene mbber binders are widely used as fuels and binders in the soHd propellant industry. The production of colored flames is enhanced by the presence of chlorine atoms in the pyrotechnic flame, so chlorine donors such as poly(vinyl chloride) or chlorinated mbber are often added to color-producing compositions, where they also serve as fuels. [Pg.347]

In the slurry process, the hydrolysis is accompHshed using two stirred-tank reactors in series (266). Solutions of poly(vinyl acetate) and catalyst are continuously added to the first reactor, where 90% of the conversion occur, and then transferred to the second reactor to reach hiU conversion. Alkyl acetate and alcohols are continuously distilled off in order to drive the equiUbrium of the reaction. The resulting poly(vinyl alcohol) particles tend to be very fine, resulting in a dusty product. The process has been modified to yield a less dusty product through process changes (267,268) and the use of additives (269). Partially hydroly2ed products having a narrow hydrolysis distribution cannot be prepared by this method. [Pg.485]

Poly(dicyclopentadiene). The development of polydicyclopentadiene [25038-78-2] for reaction injection molding is an area which has generated much interest. The polyDCPD is obtained via metathesis polymerization of high purity (usually greater than 98%) DCPD. Excellent reviews (61—62) of the chemistry and properties of polyDCPD have been pubHshed. The patent Hterature of polyDCPD synthesis, catalysts, modifiers, and appHcations is dominated by Hercules (44 patents) and B. F. Goodrich (43 patents) in the U.S. Other participants are Orkem, SheU, Nippon Zeon, and Teijin. [Pg.434]

These poly(2-alkyl-2-oxazoline) silane coupling agents were copolycondensed with tetraethoxysilane by acid-catalyst to produce poly(2-alkyl-2-oxazoline)-modified silica gel. The composite gel from 2-ethyl-2-oxazoline was also homogeneous and transparent glass. Poly(2-alkyl-2-oxazoline)-modified silica gels, especially gels based on poly(2-ethyl-2-oxazoline) absorbed water and also organic solvents such as DMF or alcohols as shown in Table 7. This result means that the obtained composite gel shows the amphiphilic adsorption property. [Pg.26]

Block copolymers were synthesized by a combination of fipase-catalyzed polymerization and atom transfer radical polymerization (ATRE). " " At first, the polymerization of 10-hydroxydecanoic acid was carried out by using lipase CA as catalyst. The terminal hydroxy group was modified by the reaction with a-bromopropionyl bromide, followed by ATRP of styrene using CuCE2,2 -bipyridine as catalyst system to give the polyester-polystyrene block copolymer. Trichloromethyl-terminated poly(e-CL), which was synthesized by lipase CA-catalyzed polymerization with 2,2,2-trichloroethanol initiator, was used as initiator for ATRP of styrene. [Pg.227]

The tremendous scope of utilization of DMAP and PPY as catalysts has led to an active interest in the development of their polymeric analogs. The pioneering work was carried out by Hierl et al (8) and Delaney et al. (9). They attached 4-dialkyl-aminopyridine derivatives to poly(ethyleneimine) and found the modified polymers to be highly active catalysts for hydrolysis of p-nitrophenylcarboxylates. Since then, many research groups have reported the synthesis of polymers functionalized with 4-dialkyl-aminopyridine (10-18). [Pg.73]

Partial hydrogenation of acetylenic compounds bearing a functional group such as a double bond has also been studied in relation to the preparation of important vitamins and fragrances. For example, selective hydrogenation of the triple bond of acetylenic alcohols and the double bond of olefin alcohols (linalol, isophytol) was performed with Pd colloids, as well as with bimetallic nanoparticles Pd/Au, Pd/Pt or Pd/Zn stabilized by a block copolymer (polystyrene-poly-4-vinylpyridine) (Scheme 9.8). The best activity (TOF 49.2 s 1) and selectivity (>99.5%) were obtained in toluene with Pd/Pt bimetallic catalyst due to the influence of the modifying metal [87, 88]. [Pg.239]

For the hydrogenation ofpolystyrene-fo-polybutadiene-fo-polystyrene (SBS) block co-polymer with Ru-TPPTS complex as catalyst, Jang et al. [92] applied a poly-ether-modified ammonium salt ionic liquid/organic biphasic system (Fig. 41.3). [Pg.1400]

Several approaches have been undertaken to construct redox active polymermodified electrodes containing such rhodium complexes as mediators. Beley [70] and Cosnier [71] used the electropolymerization of pyrrole-linked rhodium complexes for their fixation at the electrode surface. An effective system for the formation of 1,4-NADH from NAD+ applied a poly-Rh(terpy-py)2 + (terpy = terpyridine py = pyrrole) modified reticulated vitreous carbon electrode [70]. In the presence of liver alcohol dehydrogenase as production enzyme, cyclohexanone was transformed to cyclohexanol with a turnover number of 113 in 31 h. However, the current efficiency was rather small. The films which are obtained by electropolymerization of the pyrrole-linked rhodium complexes do not swell. Therefore, the reaction between the substrate, for example NAD+, and the reduced redox catalyst mostly takes place at the film/solution interface. To obtain a water-swellable film, which allows the easy penetration of the substrate into the film and thus renders the reaction layer larger, we used a different approach. Water-soluble copolymers of substituted vinylbipyridine rhodium complexes with N-vinylpyrrolidone, like 11 and 12, were synthesized chemically and then fixed to the surface of a graphite electrode by /-irradiation. The polymer films obtained swell very well in aqueous... [Pg.112]

A modified poly(ethylenimine) also acts as an efficient catalyst for decarboxylation (Suh et al., 1976 Spetnagel and Klotz, 1976). In particular, the partially quaternized polymer [SS] catalyzed the decarboxylation of oxalacetic acid in a bifunctional manner (Spetnagel and Klotz, 1976), as shown in (18). The decarboxylation is thought to occur via pre-equilibrium... [Pg.467]

Polymers containing pendant carbamate functional groups can be prepared by the reaction of phenyl isocyanate with poly(vinyl alcohol) in homogeneous dimethylsulfoxide solutions using a tri-ethylamine catalyst. These modified polymers are soluble in dimethyl sulfoxide, dimethylacetamide, dimethylformamide and formic acid but are insoluble in water, methanol and xylene. Above about 50% degree of substitution, the polymers are also soluble in acetic acid and butyrolactone. The modified polymers contain aromatic, C = 0, NH and CN bands in the infrared and show a diminished OH absorption. Similar results were noted in the NMR spectroscopy. These modified polymers show a lower specific and intrinsic viscosity in DMSO solutions than does the unmodified poly(vinyl alcohol) and this viscosity decreases as the degree of substitution increases. [Pg.99]

It was found that the reaction conditions which were optimized for the synthesis of poly(arylene siloxanylenes) (43) could be employed for the synthesis of siloxane-modified poly-(arylene carbonates). 2,4,6-Trimethylpyridine (collidine) was selected as the most suitable of all catalysts investigated (43) for the synthesis of the siloxane modified poly(arylene carbonates). Properties of polymers prepared by this method are given in Table I. In comparision to the phosgene-catalyzed homo-polycondensation of bis-silanols, III, the inherent viscosities... [Pg.462]

Over the years it has been shown that complexes prepared from organophosphorous ligands in combination with peroxotungstic acid or its quaternary ammonium salts exhibit efficient catalytic properties. In order to make an efficient recycling of the catalyst possible and get tungsten-free products and effluents, some of these catalysts were immobilized onto polystyrene, poly benzimidazole and polymethacrylate copolymers modified by the introduction of the phosphorous(V)-containing ligands. [Pg.440]


See other pages where Poly modified catalysts is mentioned: [Pg.52]    [Pg.141]    [Pg.7662]    [Pg.520]    [Pg.914]    [Pg.274]    [Pg.316]    [Pg.35]    [Pg.125]    [Pg.86]    [Pg.66]    [Pg.175]    [Pg.5]    [Pg.565]    [Pg.52]    [Pg.229]    [Pg.178]    [Pg.184]    [Pg.267]    [Pg.418]    [Pg.90]    [Pg.248]    [Pg.14]    [Pg.74]    [Pg.29]    [Pg.132]    [Pg.377]    [Pg.382]    [Pg.35]    [Pg.130]    [Pg.116]   
See also in sourсe #XX -- [ Pg.458 , Pg.460 , Pg.465 , Pg.468 , Pg.469 , Pg.472 , Pg.482 , Pg.491 , Pg.492 ]




SEARCH



Catalyst modified

Catalyst modifiers

Poly catalysts

Poly- modified

© 2024 chempedia.info