Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly microstructures

Microstructure. Interest in PVP microstmcture and the potential for tacticity has been reviewed (39,40). PVP generated by free radicals has been shown to be atactic except when polymerization is conducted in water. In this case some syndiotacticity is observed (40). In the presence of syndiotactic templates of poly(methacryhc acid) (or poly(MAA)), VP will apparentiy polymerize with syndiotactic microstmcture, although proof is lacking (41—45). The reverse, polymerization of MAA in the presence of PVP, affords, as expected, atactic poly(MAA) (46,47). [Pg.525]

Lactic acid and levulinic acid are two key intermediates prepared from carbohydrates [7]. Lipinsky [7] compared the properties of the lactide copolymers [130] obtained from lactic acid with those of polystyrene and polyvinyl chloride (see Scheme 4 and Table 5) and showed that the lactide polymer can effectively replace the synthetics if the cost of production of lactic acid is made viable. Poly(lactic acid) and poly(l-lactide) have been shown to be good candidates for biodegradeable biomaterials. Tsuji [131] and Kaspercejk [132] have recently reported studies concerning their microstructure and morphology. [Pg.419]

Since multiple electrical and optical functionality must be combined in the fabrication of an OLED, many workers have turned to the techniques of molecular self-assembly in order to optimize the microstructure of the materials used. In turn, such approaches necessitate the incorporation of additional chemical functionality into the molecules. For example, the successive dipping of a substrate into solutions of polyanion and polycation leads to the deposition of poly-ionic bilayers [59, 60]. Since the precursor form of PPV is cationic, this is a very appealing way to tailor its properties. Anionic polymers that have been studied include sulfonatcd polystyrene [59] and sulfonatcd polyanilinc 159, 60]. Thermal conversion of the precursor PPV then results in an electroluminescent blended polymer film. [Pg.223]

The mechanism of chloroprene polymerization is summarized in Scheme 4.11. Coleman et ai9iM have applied l3C NMR in a detailed investigation of the microstructure of poly(chloroprene) also known as neoprene. They report a substantial dependence of the microstructure on temperature and perhaps on reaction conditions (Table 4.3). The polymer prepared at -150 °C essentially has a homogeneous 1,4-tra/rv-niicrostructure. The polymerization is less specific at higher temperatures. Note that different polymerization conditions were employed as well as different temperatures and the influence of these has not been considered separately. [Pg.184]

The microstructure and architecture of polymers can also gready influence die properties of die polymers. For example, poly(3-substituted thiophene)s could have three microstructure joints s-trans (head to tail), s-trans (head to head), and s-cis (head to tail) (Fig. 9.3). The regioregular head-to-tail poly(3-substituted thiophene)s exhibit higher electrical conductivity values and higher... [Pg.481]

Finally it should be stressed that the complexation affects the microstructure of poly dienes. As was shown by Langer I56) small amounts of diamines added to hydrocarbon solutions of polymerizing lithium polydienes modify their structure from mainly 1,4 to a high percentage of vinyl unsaturation, e.g., for an equivalent amount of TMEDA at 0 °C 157) the fraction of the vinyl amounts to about 80%. Even more effective is 1,2-dipiperidinoethane, DIPIP. It produces close to 100% of vinyl units when added in equimolar amount to lithium in a polymerization of butadiene carried out at 5 °C 158 159), but it is slightly less effective in the polymerization of isoprene 160>. [Pg.138]

Starnes and Bovey (1) pioneered the method of I3C NMR analysis of reduced poly(vinyl chloride) (PVC) to study the microstructure of PVC. Tri-n-butyltin hydride ((n-Bu)3SnH) was found to completely dechlorinate PVC resulting in polyethylene (PE) whose microstructure (branching, end-groups, etc.) could be sensitively studied by 13C NMR. [Pg.356]

The proton decoupled carbon 13 NMR spectra for three poly( cyclohexylmethyl-co-isopropylmethyl) copolymers are shown in Figure 4. The backbone methyl group is observed as occurring between -4 and -1 ppm and consists of multiple resonances which are due to polymer microstructure. Multiple resonances are also observed for the methyl and tertiary carbon of the isopropyl group and for the methine carbon of the cyclohexyl group. Microstruc-tural assignments for these resonances remain to be made. It has also been found that increasing the bulky character of the substituent yielded broader resonance peaks in the carbon-13 NMR spectra. [Pg.117]

We have reported the first example of a ring-opening metathesis polymerization in C02 [144,145]. In this work, bicyclo[2.2.1]hept-2-ene (norbornene) was polymerized in C02 and C02/methanol mixtures using a Ru(H20)6(tos)2 initiator (see Scheme 6). These reactions were carried out at 65 °C and pressure was varied from 60 to 345 bar they resulted in poly(norbornene) with similar conversions and molecular weights as those obtained in other solvent systems. JH NMR spectroscopy of the poly(norbornene) showed that the product from a polymerization in pure methanol had the same structure as the product from the polymerization in pure C02. More interestingly, it was shown that the cis/trans ratio of the polymer microstructure can be controlled by the addition of a methanol cosolvent to the polymerization medium (see Fig. 12). The poly(norbornene) prepared in pure methanol or in methanol/C02 mixtures had a very high trans-vinylene content, while the polymer prepared in pure C02 had very high ds-vinylene content. These results can be explained by the solvent effects on relative populations of the two different possible metal... [Pg.133]

Hild S, Rieger B, Troll C, Cobzaru C (2006) Elastomeric poly(propylene) from dual-side metallocenes reversible chain transfer and its influence on polymer microstructure. Macromol Chem Phys 207 665-683... [Pg.64]

Structural characterization of crystalline phases of poly(methylene-l,3-cyclopentane) samples of different microstructures have also been reported (a) Ruiz de Ballesteros, O. Venditto, V. Auriemma, F. Guerra, G. Resconi, L. Waymouth, R. M. Mogstad, A. L. Macromolecules 1995, 28, 2383. (b) Ruiz de Ballesteros, O. Cavallo, L. Auriemma, F. Guerra, G. Macromolecules 1995, 28, 7355. [Pg.65]

The synthesis and characterization of a series of dendrigraft polymers based on polybutadiene segments was reported by Hempenius et al. [15], The synthesis begins with a linear-poly(butadiene) (PB) core obtained by the sec-butyllithium-initiated anionic polymerization of 1,3-butadiene in n-hexane, to give a microstructure containing approximately 6% 1,2-units (Scheme 3). The pendant vinyl moities are converted into electrophilic grafting sites by hydrosilylation with... [Pg.219]

The term S represents the strength of the network. The power law exponent m was found to depend on the stochiometric ratio r of crosslinker to sites. When they were in balance, i.e. r = 1, then m - 1/2. From Equations (5.140) and (5.141) this is the only condition where G (co) = G (cd) over all frequencies where the power law equation applies. If the stochiometry was varied the gel point was frequency dependent. This was also found to be the case for poly(urethane) networks. A microstructural origin has been suggested by both Cates and Muthumkumar38 in terms of a fractal cluster with dimension D (Section 6.3.5). The complex viscosity was found to depend as ... [Pg.204]

Studies on morphology and conclusions about observed levels of proton conductivity have also been carried out on PEMs other than Nafion and sulfonated poly(ether ketone). These include studies in which phenomenological examinations of relationships between conductivity and observed microstructure were carried out upon polymer systems where acid content was varied but the basic chemical structure was kept constant. In addition, other systems allowed... [Pg.118]

Figure 13. A few microstructural parameters for Nafion and sulfonated poly(arylene ether ketone)s,i as a function of the solvent (water and/or methanol) volume fraction Xy. (a) the internal hydrophobic/hydrophilic interface, and (b) the average hydrophobic/hydrophilic separation and the diameter of the solvated hydrophilic channels (pores). Figure 13. A few microstructural parameters for Nafion and sulfonated poly(arylene ether ketone)s,i as a function of the solvent (water and/or methanol) volume fraction Xy. (a) the internal hydrophobic/hydrophilic interface, and (b) the average hydrophobic/hydrophilic separation and the diameter of the solvated hydrophilic channels (pores).
Karger-Kocsis J. and Friedrich K. (1987). Microstructural details and the effect of testing conditions on the fracture toughness of injection molded poly(phenylene sulphide). J. Mater. Sci. 22, 947-961. [Pg.275]


See other pages where Poly microstructures is mentioned: [Pg.185]    [Pg.625]    [Pg.41]    [Pg.453]    [Pg.221]    [Pg.49]    [Pg.231]    [Pg.140]    [Pg.280]    [Pg.58]    [Pg.76]    [Pg.43]    [Pg.369]    [Pg.58]    [Pg.548]    [Pg.351]    [Pg.155]    [Pg.206]    [Pg.48]    [Pg.63]    [Pg.160]    [Pg.221]    [Pg.222]    [Pg.358]    [Pg.92]    [Pg.74]    [Pg.420]    [Pg.433]    [Pg.359]    [Pg.209]    [Pg.181]    [Pg.189]   
See also in sourсe #XX -- [ Pg.225 ]

See also in sourсe #XX -- [ Pg.55 ]

See also in sourсe #XX -- [ Pg.34 ]




SEARCH



Microstructure investigation, poly

Microstructure of poly

Microstructure of the Poly-Si Films

Poly microstructure

Poly microstructure

Poly polymer microstructure

© 2024 chempedia.info