Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly film semiconductor

In poly crystalline semiconductor samples, the excited-state lifetime of electron-hole pairs is so short that photocurrent collection is efficient only for carriers created within the space charge (depletion) region. Thin-film processes offer an inexpensive way to prepare large solar arrays, but the semiconductors formed by such processes are almost inevitably polycrystalline. It is not wise to use semiconductor films thicker than the depletion width in such devices because the additional thickness contributes only extra grain barrier boundaries for the majority of carriers to surmount on their way to the back contact. The additional thickness does not provide any additional photocurrent. [Pg.84]

Application of amphiphilic block copolymers for nanoparticle formation has been developed by several research groups. R. Schrock et al. prepared nanoparticles in segregated block copolymers in the sohd state [39] A. Eisenberg et al. used ionomer block copolymers and prepared semiconductor particles (PdS, CdS) [40] M. Moller et al. studied gold colloidals in thin films of block copolymers [41]. M. Antonietti et al. studied noble metal nanoparticle stabilized in block copolymer micelles for the purpose of catalysis [36]. Initial studies were focused on the use of poly(styrene)-folock-poly(4-vinylpyridine) (PS-b-P4VP) copolymers prepared by anionic polymerization and its application for noble metal colloid formation and stabilization in solvents such as toluene, THF or cyclohexane (Fig. 6.4) [42]. [Pg.283]

Nickel AML, Seker E, Ziemer BP, Ellis AB. Imprinted poly (acrylic acid) films on cadmium selenide. A composite sensor structure that couples selective amine binding with semiconductor substrate photoluminescence. Chem Mater 2001 13 1391-1397. [Pg.425]

The technique of alternating polyelectrolyte film construction has also been adapted to incorporate semiconductors into layered films. For example, multilayer films have been constructed by alternately dipping a quartz substrate into a solution of poly(diallylmethylammonium chloride) and then a solution of a stabilized CdS or PbS colloid (41). The layer-by-layer self-assembly of alternating polymer and metal sulfide is at least partially driven by the electrostatic attraction of the cationic polymer and the negative charge of the stabilized MC colloid particles. [Pg.242]

As described in Section 3 of Chapter 4, the stabilization of n-Si electrode by coating with poly(pyrrole) has attracted much attention. The stabilization of a small bandgap n-semiconductor electrode against oxidation is of great value not only to convert visible light into chemical energy, but also to construct liquid-junction solar cells operated under visible irradiation. The poly(pyrrole) film is usually electropolymerized on the semiconductor electrode dipped in the aqueous solution of pyrrole. The remarkable stabilizing effect of poly(pyrrole) film on polycrystalline n-Si is shown in Fig. 22 67). The photocurrent obtained under irradiation in the aqueous solution of... [Pg.32]

One problem for the coated system is that the film is peeled off after prolonged irradiation. In order to have a more adhesive film, the surface of n-Si was modified with N-(3-trimethoxysilyIpropyl)pyrrole (22). Pyrrole was then electrodeposited on this modified electrode as shown in Eq. (24) 85). The durability of the coated poly(pyrrole) was improved by such a treatment of n-Si surface. The n-Si electrode coated only with poly(pyrrole) gave a declined photocurrent from 6.5 to 1.8 mA cm-2 in less than 18 h, while the poly(pyrrole) coated n-Si treated at first with 22 as Eq. (24) gave a stable photocurrent of 7.6 mA cm-2 for 25 h. When an n-Si electrode was coated with Pt layer before the deposition of poly(pyrrole), the stability of the semiconductor was improved remarkably (ca. 19 days)85b). A power conversion efficiency of 5.5% was obtained with iodide/iodine redox electrolytes. [Pg.34]

Poly(acrylic acid) (PAA), a MIP film candidate, has been shown to bind to the bare CdSe surface from methanol solution with considerable affinity [13]. Placement of drops of a PAA-methanol solution on the surface of CdSe and evaporation of the solvent leaves a PAA film on the semiconductor surface. Once coated with this PAA film, CdSe shows no change in PL intensity in the presence of amines. Despite the lack of a PL change, the deprotonation of the carboxylic acid could be observed by the shifting of the infrared (IR) carboxylic acid peak to lower frequencies characteristic of the carboxylate anion upon amine binding, as shown in Fig. 5. The reaction chemistry is ... [Pg.351]

FIGURE 2.5 NSOM topography and polarized luminescence from poly(dihexylfluorene) (an organic semiconductor) film. [Pg.41]

The materials (metals and conjugated polymers) that are used in LED applications were introduced in the previous chapter. The polymer is a semiconductor with a band gap of 2-3 eV. The most commonly used polymers in LEDs today are derivatives of poly(p-phenylene-vinylene) (PPV), poly(p-phenylene) (PPP), and polythiophene (PT). These polymers are soluble and therefore relatively easy to process. The most common LED device layout is a three layer component consisting of a metallic contact, typically indium tin oxide (ITO), on a glass substrate, a polymer film r- 1000 A thick), and an evaporated metal contact4. Electric contact to an external voltage supply is made with the two metallic layers on either side of the polymer. [Pg.65]


See other pages where Poly film semiconductor is mentioned: [Pg.382]    [Pg.472]    [Pg.85]    [Pg.399]    [Pg.148]    [Pg.90]    [Pg.22]    [Pg.427]    [Pg.125]    [Pg.375]    [Pg.138]    [Pg.372]    [Pg.2]    [Pg.7]    [Pg.648]    [Pg.298]    [Pg.198]    [Pg.475]    [Pg.586]    [Pg.198]    [Pg.282]    [Pg.30]    [Pg.32]    [Pg.331]    [Pg.149]    [Pg.170]    [Pg.176]    [Pg.28]    [Pg.123]    [Pg.152]    [Pg.257]    [Pg.167]    [Pg.337]    [Pg.25]    [Pg.126]   
See also in sourсe #XX -- [ Pg.520 ]




SEARCH



Films semiconductor

Poly films

Semiconductors Poly

© 2024 chempedia.info