Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly diblock preparation

Poly(styrene-/7-isobutylene-/ -styrene) (PS-PIB-PS), triblock copolymers can be prepared via coupling of living PS-PIB diblock copolymers in a one-pot procedure [12]. [Pg.107]

Analogous alkoxides, phenoxides, and carboxylates will also initiate the ROP of epoxides, all forming propagating alkoxide species.779 Block copolymers of epoxides with /3-butyrolactone have been prepared via the addition of EO or PO to living poly(ester) chains.782 The oxygen-bound enolate of living PMMA will also react with epoxides to yield diblocks such as PEO-b-PMMA and PPO-b-PMMA (Mn= 12,800, Mw/Mn = 1.16) 787... [Pg.53]

Much work on the preparation of nonaqueous polymer dispersions has involved the radical polymerization of acrylic monomers in the presence of copolymers having the A block the same as the acrylic polymer in the particle core 2). The preparation of polymer dispersions other than polystyrene in the presence of a PS-PDMS diblock copolymer is of interest because effective anchoring of the copolymer may be influenced by the degree of compatibility between the PS anchor block and the polymer molecules in the particle core. The present paper describes the interpretation of experimental studies performed with the aim of determining the mode of anchoring of PS blocks to polystyrene, poly(methyl methacrylate), and poly(vinyl acetate) (PVA) particles. [Pg.268]

Liu et al. prepared palladium nanoparticles in water-dispersible poly(acrylic acid) (PAA)-lined channels of diblock copolymer microspheres [47]. The diblock microspheres (mean diameter 0.5 pm) were prepared using an oil-in-water emulsion process. The diblock used was poly(t-butylacrylate)-Wock-poly(2-cinna-moyloxyethyl) methacrylate (PtBA-b-PCEMA). Synthesis of the nanoparticles inside the PAA-lined channels of the microspheres was achieved using hydrazine for the reduction of PdCl2, and the nanoparticle formation was confirmed from TEM analysis and electron diffraction study (Fig. 9.1). The Pd-loaded microspheres catalyzed the hydrogenation of methylacrylate to methyl-propionate. The catalytic reactions were carried out in methanol as solvent under dihydro-... [Pg.221]

Second, the conversion of one of the blocks into another type of structure by a suitable quantitative chemical reaction, allows a broad diversification of the properties of the available block copolymers. The best example of such an opportunity is probably the hydrogenation of poly(butadiene-b-styrene) copolymers, which yields a product close to a low density poly(ethylene-b-styrene) when starting from an anionically prepared diblock (including a certain amount, ca. 10 %, of 1.2 units), while a high density poly(ethy1ene-b-styrene)... [Pg.308]

In this review, synthesis of block copolymer brushes will be Hmited to the grafting-from method. Hussemann and coworkers [35] were one of the first groups to report copolymer brushes. They prepared the brushes on siUcate substrates using surface-initiated TEMPO-mediated radical polymerization. However, the copolymer brushes were not diblock copolymer brushes in a strict definition. The first block was PS, while the second block was a 1 1 random copolymer of styrene/MMA. Another early report was that of Maty-jaszewski and coworkers [36] who reported the synthesis of poly(styrene-h-ferf-butyl acrylate) brushes by atom transfer radical polymerization (ATRP). [Pg.129]

During the last 5 years, there have been several reports of multiblock copolymer brushes by the grafting-from method. The most common substrates are gold and silicon oxide layers but there have been reports of diblock brush formation on clay surfaces [37] and silicon-hydride surfaces [38]. Most of the newer reports have utilized ATRP [34,38-43] but there have been a couple of reports that utilized anionic polymerization [44, 45]. Zhao and co-workers [21,22] have used a combination of ATRP and nitroxide-mediated polymerization to prepare mixed poly(methyl methacrylate) (PMMA)Zpolystyrene (PS) brushes from a difunctional initiator. These Y-shaped brushes could be considered block copolymers that are surface immobilized at the block junction. [Pg.130]

To make further use of the azo-initiator, tethered diblock copolymers were prepared using reversible addition fragmentation transfer (RAFT) polymerization. Baum and co-workers [51] were able to make PS diblock copolymer brushes with either PMMA or poly(dimethylacrylamide) (PDMA) from a surface immobihzed azo-initiator in the presence of 2-phenylprop-2-yl dithiobenzoate as a chain transfer agent (Scheme 3). The properties of the diblock copolymer brushes produced can be seen in Table 1. The addition of a free initiator, 2,2 -azobisisobutyronitrile (AIBN), was required in order to obtain a controlled polymerization and resulted in the formation of free polymer chains in solution. [Pg.132]

To better understand the time-scale of diblock brush reorganization, we prepared semifluorinated diblock copolymer brushes where the outer block (at the air interface) was a semifluorinated block composed of poly(pentafluoro-... [Pg.142]

The living nature of the poly(styryl)anion allows one to prepare block copolymers with a great deal of control of the block copolymer structure. The preparation of diblock, triblock, and other types of multiblock copolymers has been reviewed [29-32]. Several of these block copolymers are in commercial use. The basic concept involves first preparing polystyrene block [RSt StLi—see Eq. (2)] and then adding a new monomer that can be added to start another growing segment. [Pg.19]

A neutral diblock copolymer consisting of poly[(butyl acrylate)-b-(2-di mcthyl-aminoethyl acrylate)] was prepared by Bavouzet et al. (4) and used in cosmetic formulations. [Pg.246]


See other pages where Poly diblock preparation is mentioned: [Pg.664]    [Pg.179]    [Pg.8]    [Pg.125]    [Pg.320]    [Pg.480]    [Pg.42]    [Pg.27]    [Pg.75]    [Pg.76]    [Pg.83]    [Pg.268]    [Pg.268]    [Pg.447]    [Pg.209]    [Pg.285]    [Pg.38]    [Pg.155]    [Pg.160]    [Pg.162]    [Pg.173]    [Pg.174]    [Pg.184]    [Pg.12]    [Pg.27]    [Pg.34]    [Pg.92]    [Pg.133]    [Pg.140]    [Pg.276]    [Pg.26]    [Pg.196]    [Pg.643]    [Pg.645]    [Pg.725]    [Pg.155]    [Pg.3]   
See also in sourсe #XX -- [ Pg.249 ]




SEARCH



Diblock

Poly , diblock

Poly , preparation

Poly diblocks

Poly prepared

© 2024 chempedia.info