Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly block polymer, from

The small molecules used as the basic building blocks for these large molecules are known as monomers. For example the commercially important material poly(vinyl chloride) is made from the monomer vinyl chloride. The repeat unit in the polymer usually corresponds to the monomer from which the polymer was made. There are exceptions to this, though. Poly(vinyl alcohol) is formally considered to be made up of vinyl alcohol (CH2CHOH) repeat units but there is, in fact, no such monomer as vinyl alcohol. The appropriate molecular unit exists in the alternative tautomeric form, ethanal CH3CHO. To make this polymer, it is necessary first to prepare poly(vinyl ethanoate) from the monomer vinyl ethanoate, and then to hydrolyse the product to yield the polymeric alcohol. [Pg.1]

Puskas, J.E., Pattern, W.E., Wetmore, P.M., and Krukonis, A. Multiarm-star polyisobutylene-polystyrene thermoplastic elastomers from a novel multifunctional initiator, Polym. Mater. Set Eng., 82,42 3, 1999. Brister, L.B., Puskas, J.E., and Tzaras, E. Star-branched PIB/poly(p-t-bu-Styrene) block copolymers from a novel epoxide initiator, Polym. Prepr., 40, 141-142, 1999. [Pg.216]

Blocking aMeSt or MVE from Quasiliving Poly(IBVE) Dication. An important application of quasiliving polymerizations may be for the synthesis of block copolymers. Efforts have been made to prepare novel block polymers starting from quasiliving poly(IBVE) dication by the addition of aMeSt and/or MVE as the second monomer. Eq. 3 outlines the principle of the blocking experiments ... [Pg.224]

Similarly, blocking MVE from quasiliving poly(IBVE) dications was accomplished. The products were fractionated with a heterogeneous mixture of n-heptane and water (5/2, v/v) the former is a good solvent for poly(IBVE) only, the latter a good solvent for poly(MVE) only. The 1H NMR spectra of the n-heptane-soluble fractions exhibited a sharp resonance at 6 3.3 ppm (-OCH3), characteristic of MVE units, and a doublet at 6 0.9 ppm (—i (CH3)2), characteristic of IBVE units. The presence of poly(MVE) segments in these fractions indicates the formation of IBVE-MVE block polymers. [Pg.226]

Several attempts have been made to superimpose creep and stress-relaxation data obtained at different temperatures on styrcne-butadiene-styrene block polymers. Shen and Kaelble (258) found that Williams-Landel-Ferry (WLF) (27) shift factors held around each of the glass transition temperatures of the polystyrene and the poly butadiene, but at intermediate temperatures a different type of shift factor had to be used to make a master curve. However, on very similar block polymers, Lim et ai. (25 )) found that a WLF shift factor held only below 15°C in the region between the glass transitions, and at higher temperatures an Arrhenius type of shift factor held. The reason for this difference in the shift factors is not known. Master curves have been made from creep and stress-relaxation data on partially miscible graft polymers of poly(ethyl acrylate) and poly(mcthyl methacrylate) (260). WLF shift factors held approximately, but the master curves covered 20 to 25 decades of time rather than the 10 to 15 decades for normal one-phase polymers. [Pg.118]

The idea of the preparation of porous polymers from high internal phase emulsions had been reported prior to the publication of the PolyHIPE patent [128]. About twenty years previously, Bartl and von Bonin [148,149] described the polymerisation of water-insoluble vinyl monomers, such as styrene and methyl methacrylate, in w/o HIPEs, stabilised by styrene-ethyleneoxide graft copolymers. In this way, HIPEs of approximately 85% internal phase volume could be prepared. On polymerisation, solid, closed-cell monolithic polymers were obtained. Similarly, Riess and coworkers [150] had described the preparation of closed-cell porous polystyrene from HIPEs of water in styrene, stabilised by poly(styrene-ethyleneoxide) block copolymer surfactants, with internal phase volumes of up to 80%. [Pg.201]

The formation of block copolymers from styrene-maleic anhydride and acrylic monomers was also indicated by pyrolytic gas chromatography and infrared spectroscopy. A comparison of the pyrograms of the block copolymers in Figure 7 shows peaks comparable with those obtained when mixtures of the acrylate polymers and poly(styrene-co-maleic anhydride) were pyrolyzed. A characteristic infrared spectrum was observed for the product obtained when macroradicals were added to a solution of methyl methacrylate in benzene. The characteristic bands for methyl methacrylate (MM) are noted on this spectogram in Figure 8. [Pg.438]

Oxidation of mixtures of 2,6-disubstituted phenols leads to linear poly(arylene oxides). Random copolymers are obtained by oxidizing mixtures of phenols. Block copolymers can be obtained only when redistribution of the first polymer by the second monomer is slower than polymerization of the second monomer. Oxidation of a mixture of 2,6-di-methylphenol (DM ) and 2fi-diphenylphenol (DPP) yields a random copolymer. Oxidation of DPP in the presence of preformed blocks of polymer from DMP produces either a random copolymer or a mixture of DMP homopolymer and extensively randomized copolymer. Oxidation of DMP in the presence of polymer from DPP yields the block copolymer. Polymer structure is determined by a combination of differential scanning calorimetry, selective precipitation from methylene chloride, and NMR spectroscopy. [Pg.442]

Yamaguchi, I., Osakada, K., Yamamoto, T., Polyrotaxane containing a blocking group in every structural unit of the polymer chain. Direct synthesis of poly(alkylenebenzimidazole) rotaxane from Ru complex-catalyzed reaction of 1,12-dodecanediol and 3,3-diaminobenzidine in the presence of cyclodextrin. J. Am. Chem. Soc. 1996, 118, 1811-1812. [Pg.926]

SCBs play an important role in the formation of other block copolymers. For example, the relatively less nucleophilic poly(ethylene oxide) oxyanion cannot initiate the polymerization of styrene, which needs a more nucleophilic alkyllithium initiator. To enable the synthesis of multi-block copolymers from various combinations of monomers by anionic mechanisms, it is important to modify the reactivity of the growing anionic chain end of each polymer so as to attack the co-monomer. There have only been a few reports on the polymerization of styrene initiated by an oxyanion (see <2001MM4384> and references cited). Thus, there exists a need for a transitional species that is capable of converting oxyanions into carbanions. In 2000, Kawakami and co-workers came up with the concept of the carbanion pump , in which the ring-strain energy of the SCB is harnessed to convert an oxyanion into a carbanion (Scheme 13) <2000MI527>. [Pg.526]

Investigations were mainly devoted to the synthesis of telechelic polymers and copolymers rather than to living radical polymerization. In particular, from 1960, Imoto et al. [234] started surveys on the synthesis of block copolymers from this method. Thus, polystyrene-i>-poly(vinyl alcohol) diblock copolymer... [Pg.129]

As noted above block copolymers had a poly(ethyleneoxide) head group Y and tails X of poly(12-hydroxystearic) acid. The polymers are formed in a one-step polymerisation from 12-hydroxystearic acid and poly(ethyleneoxide) polymers of various molar masses. The values of the number and mass average molar masses shown in Table 1 were obtained by GPC. Vapour pressure osmometer measurements gave the... [Pg.339]

The coefficients 8.10 and 0.010 in the second equation are usually ascribed to the reactivity ratios rj and rj (Table 19). This catalyst produces poly-propene consisting mainly of syndiotactic stereoblocks, together with short disordered blocks resulting from head-to-head (hh) and tail-to-tail (tt) pro-pene enchainment and occasional isolated isotactic units, and if these features apply to copolymers prepared with vanadium catalysts, the reaction is in effect a terpolymerization. Locatelli et al. [322] derive the equation for monomer/polymer composition ratios... [Pg.247]

Anionic polymerization carried out under suitable conditions results in the formation of living poly-mers—i.e. species which may grow further, if a suitable monomer is present in the system. This characteristic feature of living polymers, which arises from the elimination of all the termination steps, permits the following preparation of block polymers, polymers possessing two terminal functional groups, monodispersed polymers, etc. studies of the thermodynamics of the propagation step—i.e. determination of A / < cl aS of the... [Pg.96]

The ABA-type block copolymers B-86 to B-88 were synthesized via termination of telechelic living poly-(THF) with sodium 2-bromoisopropionate followed by the copper-catalyzed radical polymerizations.387 A similar method has also been utilized for the synthesis of 4-arm star block polymers (arm B-82), where the transformation is done with /3-bromoacyl chloride and the hydroxyl terminal of poly(THF).388 The BAB-type block copolymers where polystyrene is the midsegment were prepared by copper-catalyzed radical polymerization of styrene from bifunctional initiators, followed by the transformation of the halogen terminal into a cationic species with silver perchlorate the resulting cation was for living cationic polymerization of THF.389 A similar transformation with Ph2I+PF6- was carried out for halogen-capped polystyrene and poly(/>methoxystyrene), and the resultant cationic species subsequently initiated cationic polymerization of cyclohexene oxide to produce... [Pg.494]


See other pages where Poly block polymer, from is mentioned: [Pg.626]    [Pg.602]    [Pg.91]    [Pg.168]    [Pg.171]    [Pg.311]    [Pg.79]    [Pg.6]    [Pg.28]    [Pg.202]    [Pg.408]    [Pg.82]    [Pg.78]    [Pg.718]    [Pg.414]    [Pg.364]    [Pg.5]    [Pg.301]    [Pg.3]    [Pg.77]    [Pg.391]    [Pg.397]    [Pg.398]    [Pg.117]    [Pg.229]    [Pg.171]    [Pg.14]    [Pg.26]    [Pg.217]    [Pg.416]    [Pg.1094]    [Pg.431]    [Pg.42]    [Pg.150]   
See also in sourсe #XX -- [ Pg.545 ]




SEARCH



Block polymers

Blocking polymers

Poly block

Poly blocking

Poly from

Poly polymers

© 2024 chempedia.info