Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly anionic polymerized molecular

Polyacetaldehyde, a mbbery polymer with an acetal stmcture, was first discovered in 1936 (49,50). More recentiy, it has been shown that a white, nontacky, and highly elastic polymer can be formed by cationic polymerization using BF in Hquid ethylene (51). At temperatures below —75° C using anionic initiators, such as metal alkyls in a hydrocarbon solvent, a crystalline, isotactic polymer is obtained (52). This polymer also has an acetal [poly(oxymethylene)] stmcture. Molecular weights in the range of 800,000—3,000,000 have been reported. Polyacetaldehyde is unstable and depolymerizes in a few days to acetaldehyde. The methods used for stabilizing polyformaldehyde have not been successful with poly acetaldehyde and the polymer has no practical significance (see Acetalresins). [Pg.50]

Polymerization ofiVIasked Disilenes. A novel approach, namely, the anionic polymerization of masked disilenes, has been used to synthesize a number of poly(dialkylsilanes) as well as the first dialkylamino substituted polysilanes (eq. 13) (111,112). The route is capable of providing monodisperse polymers with relatively high molecular weight M = lO" — 10 ), and holds promise of being a good method for the synthesis of alternating and block copolymers. [Pg.262]

As these block copolymers were synthesized using the anionic polymerization technique, their molecular weight distributions were narrow. The microspheres with narrower size distribution are better for well-ordered self-organization. Actually, all block copolymers synthesized for these works formed poly(4-vinyl pyridine) (P4VP) spheres in the PS matrices with narrow size distributions. [Pg.602]

The poly(styrene-b-isoprene) (P(S-b-IP)) and poly(-styrene-b-2-vinyl pyridine) (P(S-b-2VP)) block copolymers with narrow molecular weight distributions for blending with the microspheres were also synthesized using the additional anionic polymerization technique. The number-average molecular weights (Mns) and PS contents are also shown in Table 1. [Pg.602]

Some tailor-made homopolymers can serve as starting points for chemical modifications to yield new species. Poly(hydroxyethyl methacrylate) and poly(glyceryl methacrylate) 16), already mentioned, are obtained upon hydrolysis of the OH-protecting groups that allow the anionic polymerization to proceed. Another example is the acid hydrolysis of poly(t-butyl methacrylate), a reaction which proceeds easily to completion, yielding poly(methacrylic acid) of known degree of polymerization and narrow molecular weight distribution 44 45). [Pg.154]

Analogous principles should apply to ionically propagated polymerizations. The terminus of the growing chain, whether cation or anion, can be expected to exhibit preferential addition to one or the other carbon of the vinyl group. Poly isobutylene, normally prepared by cationic polymerization, possesses the head-to-tail structure, as already mentioned. Polystyrenes prepared by cationic or anionic polymerization are not noticeably different from free-radical-poly-merized products of the same molecular weights, which fact indicates a similar chain structure irrespective of the method of synthesis. In the polymerization of 1,3-dienes, however, the structure and arrangement of the units depends markedly on the chain-propagating mechanism (see Sec. 2b). [Pg.237]

Polystyrene standards used were narrow molecular weight distribution sample produced by anionic polymerization and available from Pressure Chemical Co. Also sample NBS7C from the National Bureau of Standards was used. The sample of poly n-butyl methacrylate was obtained from Aldrich Chemical. It was produced by free radici polymerization with an Mw of 320,(XK) and an Mn of 73,500 (Cat. No. 18,153-6). [Pg.150]

A radical initiator based on the oxidation adduct of an alkyl-9-BBN (47) has been utilized to produce poly(methylmethacrylate) (48) (Fig. 31) from methylmethacrylate monomer by a living anionic polymerization route that does not require the mediation of a metal catalyst. The relatively broad molecular weight distribution (PDI = (MJM ) 2.5) compared with those in living anionic polymerization cases was attributed to the slow initiation of the polymerization.69 A similar radical polymerization route aided by 47 was utilized in the synthesis of functionalized syndiotactic polystyrene (PS) polymers by the copolymerization of styrene.70 The borane groups in the functionalized syndiotactic polystyrenes were transformed into free-radical initiators for the in situ free-radical graft polymerization to prepare s-PS-g-PMMA graft copolymers. [Pg.41]

The precipitated silica (J. Crosfield Sons) was heated in vacuo at 120° for 24h. before use. Two grades of surface areas 186 and 227 m g l (BET,N2), were used during this project. Random copolymers, poly(methyl methacrylates) and polystyrene PS I were prepared by radical polymerization block polymers and the other polystyrenes were made by anionic polymerization with either sodium naphthalene or sodium a methylstyrene tetramer as initiator. The polymer compositions and molecular weights are given in Table I. [Pg.298]

Matyjaszewski et al. [281-285] succeeded in the synthesis of poly(St) with a narrow molecular weight distribution, comparable to the living anionic polymerization, in the atom transfer radical polymerization (ATRP) using Cu complex and alkyl halides (Eq. 74) ... [Pg.125]

In the present section we describe the living anionic polymerization of meth-acrylonitrile by two initiating systems such as the aluminum porphyrin-Lewis acid system and the aluminum porphyrin-Lewis base system which enables the synthesis of poly(methyl methacrylate-h-methacrylonitrile)s of controlled molecular weights. [Pg.72]

These copolymers were made by anionically polymerizing 1,3-butadiene with n-Buli followed by the addition of isoprene to the live cement. The molecular weight was varied in the 1,H poly(bd) block to produce the maximum physical properties. The content of the Bd/isoprene in the copolymer was varied 30/70. Similarly, (Table VI) the molecular weight of the diblock was kept constant at 60 AO Bd isoprene ratio, while the molecular weight of the individual block was varied. In Tables V and VI the physical properties of the di block of the conjugated diene rubber showed elastomeric properties typical of that of the uncrossed elastomer. [Pg.415]

Polymer Preparation. Poly-para-methylstyrene (P-p-MS) was prepared by anionic polymerization in benzene at 50"C initiated by n-butyllithium (9) or in THF at 25°C initiated by sodium naphthalene (10). Polymerizations in benzene allowed preparation of more monodisperse materials than those prepared in THF since the propagation rate is slower relative to the initiation rate in the nonpolar solvent (11). Two different molecular weight materials were chlorinated (P-p-MS 1 and P-p-MS2). [Pg.362]

Two batches of PVN, prepared by emulsion polymerization, had molecular weights of 510,000 and 720,000 and were used for the blends and grafts, respectively. Both polystyrene (PS, Mw = 150,000) and poly-4-vinylbiphenyl (PVB, Mw = 450,000) were prepared by anionic polymerization. A low molecular weight (Polyglycol E4000, Dow Chemical Co.) and a high molecular weight PEO (WSR-35, Union Carbide Chemicals Co.) were used as received. [Pg.168]

Alkoxide-Type Initiators. Using the guide that an appropriate initiator should have approximately the same structure and reactivity as the propagating anionic species (see Table 1), alkoxide, thioalkoxide, carboxylate, and silanolate salts would be expected to be useful initiators for the anionic polymerization of epoxides, thiiranes, lactones, and siloxanes, respectively (106—108). Thus low molecular weight poly(ethylene oxide) can be prepared... [Pg.240]

In conclusion, the basic facts and the mechanism proposed by the present writer are fully confirmed by the work of Worsford and Bywater, by McCormick and by Wenger. They all show that an anionic polymerization, if properly carried out, can produce poly-styrene or poly-a-methyl styrene of uniform molecular weight. [Pg.290]

Anionic polymerization is widely used to prepare polymers with narrow molecular weight distribution. Addition of styrene to the living poly(l,l-dialkylsilabutane)s provided a poly(l,l-dialkylsilyl-/ -styrene) block copolymer (Scheme 11) in 99% yield with MJMn = 1.19 C1997PSA3207, 1995MM7029>. [Pg.525]


See other pages where Poly anionic polymerized molecular is mentioned: [Pg.4641]    [Pg.269]    [Pg.163]    [Pg.153]    [Pg.154]    [Pg.20]    [Pg.27]    [Pg.101]    [Pg.268]    [Pg.101]    [Pg.620]    [Pg.663]    [Pg.664]    [Pg.224]    [Pg.232]    [Pg.258]    [Pg.429]    [Pg.330]    [Pg.186]    [Pg.597]    [Pg.485]    [Pg.3]    [Pg.246]    [Pg.466]    [Pg.46]    [Pg.782]    [Pg.288]    [Pg.77]    [Pg.4]    [Pg.119]    [Pg.120]    [Pg.83]    [Pg.180]   


SEARCH



Anions molecular

Anions, poly

Molecular polymerization

Poly , molecular

Poly , polymeric

Poly anionic polymerization

Polymerization poly

© 2024 chempedia.info