Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plug flow reactor in parallel

Fig. 8. Combined flow reactor models (a) parallel flow reactors with longitudinal diffusion (diffusivities can differ), (b) internal recycle—cross-flow reactor (the recycle can be in either direction), comprising two countercurrent plug-flow reactors with intercormecting distributed flows, (c) plug-flow and weU-mixed reactors in series, and (d) 2ero-interniixing model, in which plug-flow reactors are parallel and a distribution of residence times dupHcates that... Fig. 8. Combined flow reactor models (a) parallel flow reactors with longitudinal diffusion (diffusivities can differ), (b) internal recycle—cross-flow reactor (the recycle can be in either direction), comprising two countercurrent plug-flow reactors with intercormecting distributed flows, (c) plug-flow and weU-mixed reactors in series, and (d) 2ero-interniixing model, in which plug-flow reactors are parallel and a distribution of residence times dupHcates that...
The reactor setup shown in Fig. E6.1 consists of three plug flow reactors in two parallel branches. Branch D has a reactor of volume 50 liters followed by a reactor of volume 30 liters. Branch E has a reactor of volume 40 liters. What fraction of the feed should go to branch D ... [Pg.125]

ILLUSTRATIVE EXAMPLE 10.3 Is it more advantageous to connect two plug flow reactors in series than in parallel with each reactor receiving half the feed How does reaction order and degree of conversion affect the answer. Explain. [Pg.217]

Multiple reactions in parallel producing byproducts. Consider again the system of parallel reactions from Eqs. (2.16) and (2.17). A batch or plug-flow reactor maintains higher average concentrations of feed (Cfeed) than a continuous well-mixed reactor, in which the incoming feed is instantly diluted by the PRODUCT and... [Pg.29]

Adiabatic plug flow reactors operate under the condition that there is no heat input to the reactor (i.e., Q = 0). The heat released in the reaction is retained in the reaction mixture so that the temperature rise along the reactor parallels the extent of the conversion. Adiabatic operation is important in heterogeneous tubular reactors. [Pg.476]

In this work we present results obtained with the YSZ reactor operated in the hatch mode with electrochemical oxygen addition, and with the quartz plug flow reactor operated in the continuous-flow steady-state mode. In the case of continuous flow operation, the molecular sieve trap comprised two packed bed units in parallel in a swing-bed arrangement (Fig. 1), that is, one unit was maintained at low temperature (<70°C) to continuously trap the reactor products while the other was heated for -30 min to 300°C to release the products in a slow stream of He. [Pg.390]

When plug flow reactors are connected in parallel, the most efficient utilization of the total reactor volume occurs when mixing of streams of differing compositions does not occur. Consequently the feed rates to different parallel legs... [Pg.269]

For the optimum hook up of plug flow reactors connected in parallel or in any parallel-series combination, we can treat the whole system as a single plug flow reactor of volume equal to the total volume of the individual units if the feed is distributed in such a manner that fluid streams that meet have the same composition. Thus, for reactors in parallel V F or r must be the same for each parallel line. Any other way of feeding is less efficient. [Pg.125]

Figure 8.13 Distribution of materials in a batch or plug flow reactor for the elementary series-parallel reactions... Figure 8.13 Distribution of materials in a batch or plug flow reactor for the elementary series-parallel reactions...
In all cases studied, the membrane reactor offered a lower yield of formaldehyde than a plug flow reactor if all species were constrained to Knudsen diffusivities. Thus the conclusion reached by Agarwalla and Lund for a series reaction network appears to be true for series-parallel networks, too. That is, the membrane reactor will outperform a plug flow reactor only when the membrane offers enhanced permeability of the desired intermediate product. Therefore, the relative permeability of HCHO was varied to determine how much enhancement of permeability is needed. From Figure 2 it is evident that a large permselectivity is not needed, usually on the order of two to four times as permeable as the methane. An asymptotically approached upper limit of... [Pg.430]

Fig. 12.18. Comparison of the optimized reduced amounts that should be dosed and the corresponding internal compositions for a fixed-bed reactor (discrete dosing, top) and a membrane reactor (continuous dosing, bottom). A triangular network of parallel and series reactions was analyzed using an adapted plug-flow reactor model, Eq. 48. One stage (left) and 10 stages connected in series (right) were considered. All reaction orders were assumed to be 1, except for those with respect to the dosed component in the consecutive and parallel reactions (which were assumed to be 2) [66]. Fig. 12.18. Comparison of the optimized reduced amounts that should be dosed and the corresponding internal compositions for a fixed-bed reactor (discrete dosing, top) and a membrane reactor (continuous dosing, bottom). A triangular network of parallel and series reactions was analyzed using an adapted plug-flow reactor model, Eq. 48. One stage (left) and 10 stages connected in series (right) were considered. All reaction orders were assumed to be 1, except for those with respect to the dosed component in the consecutive and parallel reactions (which were assumed to be 2) [66].
I. G. Farbenindustrie in Germany implemented such a concept to produce polystyrene commercially in the 1930s. Two CSTRs in parallel followed by a plug flow reactor were used in their process. During World War II, Union Carbide applied for a patent (US Patent 2496653, 1950) for a continuous polystyrene process. Their process consisted of three cascade CSTR reactors followed by a plug flow reactor. The temperature in the three CSTR reactors is 100, 115-120 and 140 °C, respectively. The conversion at the outflow of the third CSTR reactor is around 85 %. The temperature in the plug flow reactor is between 210 and 215 °C. The final conversion at the plug flow reactor was claimed to be 97 %. [Pg.106]

The use of monoliths as catalytic reactors focuses mainly on applications where low pressure drop is an important item. When compared to fixed beds, which seem a natural first choice for catalytic reactors, monoliths consist of straight channels in parallel with a rather small diameter, because of the requirement of a comparably large surface area. The resulting laminar flow, which is encountered under normal practical circumstances, does not show the kinetic energy losses that occur in fixed beds due to inertia forces at comparable fluid velocities. Despite the laminar flow, monolith reactors still may be approached as plug-flow reactors because of the considerable radial diffusion in the narrow channels [1]. [Pg.209]

The two extremes of the state of mixedness arc represented by the plug flow reactor (PFR, no mixing) and by the perfectly stirred reactor (PSR, perfectly mixed). The reactant flow in the PFR is neither macro nor micro mixed, whereas in the PSR mixing occurs down to the molecular level, thus both macro and micro mixing take place (see Figure 6). A variety of real flows can be characterised by series, parallel or loop connections of PFR and PSR. Additionally there exist other models such as the dispersion model (dispersed plug flow) which allows to model mixing conditions between the two extremes of PFR and PSR. [Pg.578]

TABLE 7-2 Consecutive and Parallel First-Order Reactions in an Isothermal Constant-Volume Ideal Batch or Plug Flow Reactor. [Pg.13]


See other pages where Plug flow reactor in parallel is mentioned: [Pg.411]    [Pg.455]    [Pg.882]    [Pg.265]    [Pg.265]    [Pg.265]    [Pg.354]    [Pg.411]    [Pg.455]    [Pg.882]    [Pg.265]    [Pg.265]    [Pg.265]    [Pg.354]    [Pg.124]    [Pg.217]    [Pg.699]    [Pg.2070]    [Pg.107]    [Pg.159]    [Pg.134]    [Pg.269]    [Pg.323]    [Pg.123]    [Pg.403]    [Pg.354]    [Pg.136]    [Pg.429]    [Pg.10]    [Pg.88]    [Pg.21]    [Pg.25]    [Pg.475]    [Pg.475]    [Pg.524]    [Pg.1827]    [Pg.52]    [Pg.104]    [Pg.174]    [Pg.359]   
See also in sourсe #XX -- [ Pg.108 ]




SEARCH



In parallel

Plug flow

Plug flow reactor

Plug reactor

Plug-ins

Reactor in parallel

Reactor in plug-flow

Reactor parallelization

Reactor plugging

© 2024 chempedia.info