Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Platinum mechanical properties

Dentistry. Most casting alloys meet the composition and properties criteria of specification no. 5 of the American Dental Association (37) which prescribes four types of alloy systems constituted of gold—silver—copper with addition of platinum, palladium, and 2inc. Composition ranges are specified, as are mechanical properties and minimum fusion temperatures. Wrought alloys for plates also may include the same constituents. Similarly, specification no. 7 prescribes nickel and two types of alloys for dental wires with the same alloy constituents (see Dental materials). [Pg.380]

Niobium is used as a substrate for platinum in impressed-current cathodic protection anodes because of its high anodic breakdown potential (100 V in seawater), good mechanical properties, good electrical conductivity, and the formation of an adherent passive oxide film when it is anodized. Other uses for niobium metal are in vacuum tubes, high pressure sodium vapor lamps, and in the manufacture of catalysts. [Pg.26]

Physical and Mechanical Properties. Whereas there are some similarities in the physical and chemical properties between corresponding members of the PGM triads, eg, platinum and palladium, the PGMs taken as a unit exhibit a wide range of properties (2). Some of the most important are summarized in Table 2. [Pg.163]

Alloys with rhodium Rhodium alloys readily with platinum in all proportions, although the workability of the resulting alloy decreases rapidly with increasing rhodium content. Alloys containing up to about 40% rhodium, however, are workable and find numerous applications. The principal physical and mechanical properties of rhodium-platinum alloys are listed in Table 6.3. [Pg.925]

Table 6.3 Physical and mechanical properties of rhodium-platinum alloys... Table 6.3 Physical and mechanical properties of rhodium-platinum alloys...
The materials normally used in the construction of working electrodes are platinum, gold, mercury and carbon. However, there have been recent attempts to use more sophisticated materials such as superconductors (as will be discussed in Chapter 10, Section 1), but at moment, due to their poor chemical and mechanical properties, they are not very promising electrode materials. [Pg.140]

Molten Carbonate Fuel Cell The electrolyte in the MCFC is a mixture of lithium/potassium or lithium/sodium carbonates, retained in a ceramic matrix of lithium aluminate. The carbonate salts melt at about 773 K (932°F), allowing the cell to be operated in the 873 to 973 K (1112 to 1292°F) range. Platinum is no longer needed as an electrocatalyst because the reactions are fast at these temperatures. The anode in MCFCs is porous nickel metal with a few percent of chromium or aluminum to improve the mechanical properties. The cathode material is hthium-doped nickel oxide. [Pg.49]

Platinum alloys containing from 0 5 to 20 per cent, of tantalum are hard, withstand heat, as well as the action of adds and fused potassium hydrogen sulphate, and are more resistant to the action of aqua-regia than platinum.8 They possess the mechanical properties off platinum-iridium alloys and are less expensive the relative quantities, of tantalum and iridium required to produce the same hardness and mechanical resistance are stated to be 1 5. Platinum-tantalum alloys, hence have been recommended for various purposes in place of platinum or platinum-iridium. Tantalum can also be coated with platinum, andl can then be utilised in high-temperature work. ... [Pg.184]

Another factor to be considered is the time required to fabricate additional liners if the initial supply is depleted. Recently, General Atomics claimed it was able to fabricate 20-mil thick liners of the required diameter for the reactor. General Atomics plans to float a precious-metal liner in a cylindrical Hastelloy pressure vessel and use cooled elastomeric O-rings that have performed satisfactorily on other SCWO systems to form the SCWO reactor. The annular space between the liner and the vessel wall will be monitored for leaks to indicate when change-out of the liner is required. No decision has been made yet on whether to use platinum or Pt-20%Ir. Because they have markedly different mechanical properties, these two liner materials may require significantly different fabrication methods. Platinum is relatively weak and very ductile Pt-20%Ir is less ductile but 10 times stronger. Final selection of the liner material for use at the NECDF was scheduled for early 2000. Fabrication... [Pg.31]

The polysiloxane network is formed during part fabrication. In injection molding, the acetylenic alcohol, which acts as a fugitive inhibitor of the vinyl-addition reaction, is volatilized at low temperature as the pellets enter the feed throat. The platinum complex is activated at the process temperature of the urethane (170-185 °C). The vinyl-addition reaction is initiated by the melt state, and the parts generated demonstrate mechanical properties consistent with the formation of a silicone IPN. The fabricated parts are translucent. The physical properties of this formulation (PTUE 205) are given in Table 1. [Pg.186]


See other pages where Platinum mechanical properties is mentioned: [Pg.295]    [Pg.382]    [Pg.2413]    [Pg.213]    [Pg.859]    [Pg.925]    [Pg.942]    [Pg.107]    [Pg.554]    [Pg.248]    [Pg.916]    [Pg.173]    [Pg.382]    [Pg.231]    [Pg.82]    [Pg.123]    [Pg.353]    [Pg.9]    [Pg.42]    [Pg.221]    [Pg.2168]    [Pg.181]    [Pg.72]    [Pg.121]    [Pg.1085]    [Pg.384]    [Pg.676]    [Pg.554]    [Pg.2417]    [Pg.107]    [Pg.259]    [Pg.259]   
See also in sourсe #XX -- [ Pg.378 ]

See also in sourсe #XX -- [ Pg.378 ]




SEARCH



Platinum properties

© 2024 chempedia.info