Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Platinum alkanes

Adams catalyst, platinum oxide, Pt02 H20. Produced by fusion of H2PtCl6 with sodium nitrate at 500-550 C and leaching of the cooled melt with water. Stable in air, activated by hydrogen. Used as a hydrogenation catalyst for converting alkenes to alkanes at low pressure and temperature. Often used on Si02... [Pg.15]

The uncatalyzed addition of hydrogen to an alkene although exothermic is very slow The rate of hydrogenation increases dramatically however m the presence of cer tain finely divided metal catalysts Platinum is the hydrogenation catalyst most often used although palladium nickel and rhodium are also effective Metal catalyzed addi tion of hydrogen is normally rapid at room temperature and the alkane is produced m high yield usually as the only product... [Pg.231]

Alkenes react with hydrogen in the presence of a platinum palladium rhodium or nickel catalyst to form the corresponding alkane... [Pg.272]

The conditions for hydrogenation of alkynes are similar to those employed for alkenes In the presence of finely divided platinum palladium nickel or rhodium two molar equivalents of hydrogen add to the triple bond of an alkyne to yield an alkane... [Pg.374]

Ca.ta.lysts, A small amount of quinoline promotes the formation of rigid foams (qv) from diols and unsaturated dicarboxyhc acids (100). Acrolein and methacrolein 1,4-addition polymerisation is catalysed by lithium complexes of quinoline (101). Organic bases, including quinoline, promote the dehydrogenation of unbranched alkanes to unbranched alkenes using platinum on sodium mordenite (102). The peracetic acid epoxidation of a wide range of alkenes is catalysed by 8-hydroxyquinoline (103). Hydroformylation catalysts have been improved using 2-quinolone [59-31-4] (104) (see Catalysis). [Pg.394]

Hydrogenation of Acetylenes. Complete hydrogenation of acetylenes to the corresponding alkanes, which maybe requited to remove acetylenic species from a mixture, or as a part of a multistep synthesis, may be accompHshed using <5 wt % palladium or platinum on alumina in a nonreactive solvent under very mild conditions, ie, <100°C, <1 MPa (10 atm). Platinum is preferred in those cases where it is desired to avoid isomeri2ation of the intermediate olefin. Silver on alumina also can be used in this appHcation as can unsupported platinum metal. [Pg.199]

Precious Meta.1 Ca.ta.lysts, Precious metals are deposited throughout the TWC-activated coating layer. Rhodium plays an important role ia the reduction of NO, and is combiaed with platinum and/or palladium for the oxidation of HC and CO. Only a small amount of these expensive materials is used (31) (see Platinum-GROUP metals). The metals are dispersed on the high surface area particles as precious metal solutions, and then reduced to small metal crystals by various techniques. Catalytic reactions occur on the precious metal surfaces. Whereas metal within the crystal caimot directly participate ia the catalytic process, it can play a role when surface metal oxides are influenced through strong metal to support reactions (SMSI) (32,33). Some exhaust gas reactions, for instance the oxidation of alkanes, require larger Pt crystals than other reactions, such as the oxidation of CO (34). [Pg.486]

Reforming is the conversion primarily of naphthenes and alkanes to aromatics, but other reactions also occur under commercial conditions. Platinum or platinum/rhenium are the hydrogenation/ dehydrogenation component of the catalyst and alumina is the acid component responsible for skeletal rearrangements. [Pg.2095]

Another useful teehnique in kinetie studies is the measurement of the total pressure in an isothermal eonstant volume system. This method is employed to follow the eourse of homogeneous gas phase reaetions that involve a ehange in tlie total number of gaseous moleeules present in the reaetion system. An example is the hydrogenation of an alkene over a eatalyst (e.g., platinum, palladium, or niekel eatalyst) to yield an alkane ... [Pg.159]

Alkenes are reduced by addition of H2 in the presence of a catalyst such as platinum or palladium to yield alkanes, a process called catalytic hydrogenation. Alkenes are also oxidized by reaction with a peroxyacid to give epoxides, which can be converted into lTans-l,2-diols by acid-catalyzed epoxide hydrolysis. The corresponding cis-l,2-diols can be made directly from alkenes by hydroxylation with 0s04. Alkenes can also be cleaved to produce carbonyl compounds by reaction with ozone, followed by reduction with zinc metal. [Pg.246]

The suggested mechanism involves breaking of a platinum-ligand bond, again forming a platinum(IV) hydride that can then eliminate the alkane. [Pg.222]

Concerning consecutive reactions, a typical example is the hydrogenation of alkynes through alkenes to alkanes. Alkenes are more reactive alkynes, however, are much more strongly adsorbed, particularly on some group VIII noble metal catalysts. This situation is illustrated in Fig. 2 for a platinum catalyst, which was taken from the studies by Bond and Wells (45, 46) on hydrogenation of acetylene. The figure shows the decrease of... [Pg.10]

Catalytic reformers take linear alkanes, e.g., -pentane, and produce branched alkanes, e.g., i-pentane. The catalyst is finely divided platinum on Si203. [Pg.349]

Hence, the rate depends only on the ratio of the partial pressures of hydrogen and n-pentane. Support for the mechanism is provided by the fact that the rate of n-pentene isomerization on a platinum-free catalyst is very similar to that of the above reaction. The essence of the bifunctional mechanism is that the metal converts alkanes into alkenes and vice versa, enabling isomerization via the carbenium ion mechanism which allows a lower temperature than reactions involving a carbo-nium-ion formation step from an alkane. [Pg.367]

Tungsta and Platinum-Tungsta Supported on Zirconia Catalysts for Alkane Isomerization... [Pg.543]

For transition-metal catalyzed hydroxylation of alkane C-H bonds, the reactions of alkanes with platinum(II) complexes were the most successful. In an aqueous solution of hexachloroplatinic acid and Na2PtCl4, alkanes were converted into a mixture of isomeric alkyl chlorides, alcohols, and ketones, and the platinum(IV) is reduced to platinum(II).7 The kinetics of the reaction with methane as the alkane have been described in detail.8... [Pg.35]

Two main mechanisms may be proposed for the first step of the alkane interaction with platinum(II) complexes (1) oxidative addition... [Pg.35]

Relatively, few studies were devoted to the reduction of NO by HC in TW conditions. Platinum seems to be a good reducer of NO by light alkanes, specially the methane [95] ... [Pg.253]

Usually, various quantities of alkane are found during the hydrogenolyses of oxacycloalkanes. This is especially so for the oxiranes on platinum metals in the presence of hydrogen. These alkanes presumably form from alkenes, which are formed from deoxygenation (Scheme 4.67). [Pg.159]

The most important contributions in this area, however, directly related to bond activation chemistry, and, undoubtedly triggered by theoretical considerations along the lines of Figure 1, were reported by Whitesides and coworkers in 1986 and 1988 [11]. It was shown that the bent, bisphosphine-coordinated platinum chelate complex [(dcpe)Pt(O)] (9) (dcpe = bis(dicyclohexylphosphino)ethane), which could be generated thermally as a "hot" reactive intermediate by reductive elimination of neopentane from its ris-neopentylhydride Pt(II) precursor at around 60-70°C in solution, was able to activate C-H bonds, even of unactivated alkanes. [Pg.236]

More than three decades ago, skeletal rearrangement processes using alkane or cycloalkane reactants were observed on platinum/charcoal catalysts (105) inasmuch as the charcoal support is inert, this can be taken as probably the first demonstration of the activity of metallic platinum as a catalyst for this type of reaction. At about the same time, similar types of catalytic conversions over chromium oxide catalysts were discovered (106, 107). Distinct from these reactions was the use of various types of acidic catalysts (including the well-known silica-alumina) for effecting skeletal reactions via carbonium ion mechanisms, and these led... [Pg.25]

As the data in Table XIV indicate, over platinum demethylation of a ring is slow compared to C—C bond rupture within a ring. On the other hand, it is well established [e.g., Kochloefl and Bazant (161) that if one uses a supported nickel catalyst which is known to favor stepwise alkane degradation, reaction with an alkylcycloalkane is largely confined to the alkyl group (s) which are degraded in a stepwise fashion and are finally removed entirely from the ring. [Pg.70]

Other Cg hydrocarbons. The dehydrogenation of normal hexane and 2,3-di methyl butane also proceeds but not as voraciously on small platinum clusters. Figure 8 is a plot of the hydrogen content in the first adduct as a function of the size of the platinum metal cluster. The metal atom reacts via dihydrogen elimination to produce PtC6Hi2 products. The platinum trimer is now the smallest cluster that will produce a C H near one. The similarity of size dependent dehydrogenation of the normal hexane and the branched molecule suggest that these systems may not readily aromatize these alkanes. Further structural studies are needed to identify the reaction products. [Pg.63]

Chemistry studies of alkanes on platinum surfaces under UHV conditions are limited by the very weakly bound molecularly chemisorbed state(59). The low surface temperatures required to... [Pg.63]

In summary a few "generalizations" have been found. First, size selective chemistry is strongly associated with chemisorption that requi res bond-breaking. Second, metal clusters react rapidly with ligands that molecularly chemisorb even when the eventual products involve dissociation of the ligand. Dehydrogenation of Cg-alkanes on small platinum clusters take exception to this. [Pg.69]


See other pages where Platinum alkanes is mentioned: [Pg.195]    [Pg.185]    [Pg.174]    [Pg.109]    [Pg.216]    [Pg.344]    [Pg.364]    [Pg.57]    [Pg.524]    [Pg.36]    [Pg.39]    [Pg.40]    [Pg.235]    [Pg.51]    [Pg.53]    [Pg.93]    [Pg.93]    [Pg.102]    [Pg.103]    [Pg.105]    [Pg.62]    [Pg.63]   
See also in sourсe #XX -- [ Pg.39 , Pg.178 ]




SEARCH



Alkanes platinum-catalyzed oxidations

Platinum, reaction with alkanes

Practical Platinum Catalysts for Alkane Functionalization

© 2024 chempedia.info