Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Platinum acetylene

The protonation of zero-valent platinum-acetylene complexes has been discussed by several workers, and a mechanism proposed involving insertion of the acetylene into a hydroplatinum bond 287). The reaction... [Pg.299]

An unknown acetylenic ammo acid obtained from the seed of a tropical fruit has the molec ular formula C7H11NO2 On catalytic hydrogenation over platinum this ammo acid yielded homoleucme (an ammo acid of known structure shown here) as the only product What is the structure of the unknown ammo acid" ... [Pg.386]

R SiH and CH2= CHR interact with both PtL and PtL 1. Complexing or chelating ligands such as phosphines and sulfur complexes are exceUent inhibitors, but often form such stable complexes that they act as poisons and prevent cute even at elevated temperatures. Unsaturated organic compounds are preferred, such as acetylenic alcohols, acetylene dicarboxylates, maleates, fumarates, eneynes, and azo compounds (178—189). An alternative concept has been the encapsulation of the platinum catalysts with either cyclodextrin or in thermoplastics or siUcones (190—192). [Pg.48]

Hydrogenation of Acetylenes. Complete hydrogenation of acetylenes to the corresponding alkanes, which maybe requited to remove acetylenic species from a mixture, or as a part of a multistep synthesis, may be accompHshed using <5 wt % palladium or platinum on alumina in a nonreactive solvent under very mild conditions, ie, <100°C, <1 MPa (10 atm). Platinum is preferred in those cases where it is desired to avoid isomeri2ation of the intermediate olefin. Silver on alumina also can be used in this appHcation as can unsupported platinum metal. [Pg.199]

Examples of perfluoroalkyl iodide addition to the triple bond include free radical addition of perfluoropropyl iodide to 1 -heptyne [28] (equation 21), thermal and free radical-initiated addition of lodoperfluoroalkanesulfonyl fluorides to acetylene [29] (equation 22), thermal addition of perfluoropropyl iodide to hexa-fluoro 2 butyne [30] (equation 23), and palladium-catalyzed addition of per-fluorobutyl iodide to phenylacetylene [31] (equation 24) The E isomers predominate in these reactions Photochemical addition of tnfluoromethyl iodide to vinylacetylene gives predominantly the 1 4 adduct by addition to the double bond [32] Platinum catalyzed addition of perfluorooctyl iodide to l-hexyne in the presence of potassium carbonate, carbon monoxide, and ethanol gives ethyl () per fluorooctyl-a-butylpropenoate [JJ] (equation 25)... [Pg.763]

Many workers (5,6,7,87) have compared various metals for the selective hydrogenation of lower acetylenes to olefins, and it was always found that palladium was by far the most selective. This conclusion concurs with the usual synthetic experience, but under special circumstances other metals, such as platinum, may prove more useful (35,63). The catalyst support may also have an influence (21,65). Carbon, calcium carbonate, and barium sulfate are frequently used supports. Examples of some differences are noted later,... [Pg.53]

Concerning consecutive reactions, a typical example is the hydrogenation of alkynes through alkenes to alkanes. Alkenes are more reactive alkynes, however, are much more strongly adsorbed, particularly on some group VIII noble metal catalysts. This situation is illustrated in Fig. 2 for a platinum catalyst, which was taken from the studies by Bond and Wells (45, 46) on hydrogenation of acetylene. The figure shows the decrease of... [Pg.10]

The increase of selectivity in consecutive reactions in favor of the intermediate product may be sometimes extraordinarily high. Thus, for example, in the already cited hydrogenation of acetylene on a platinum and a palladium catalyst (45, 46) or in the hydrogenation or deuteration of 2-butynes on a palladium catalyst (57, 58), high selectivities in favor of reaction intermediates (alkenes) are obtained, even though their hydrogenation is in itself faster than the hydrogenation of alkynes. [Pg.21]

S. Tracey, A. Palermo, J.P.H. Vazquez, and R.M. Lambert, In Situ Electrochemical Promotion by Sodium of the Selective Hydrogenation of Acetylene over Platinum, J. Catal. 179, 231-240 (1998). [Pg.187]

A derivative of cyclopentyne has been trapped in a matrix. Although cycloheptyne and cyclohexyne have not been isolated at room temperatures, Pt(0) complexes of these compounds have been prepared and are stable." The smallest cyclic allene" so far isolated is l-/err-butyl-l,2-cyclooctadiene 107." The parent 1,2-cyclooctadiene has not been isolated. It has been shown to exist transiently, but rapidly dimerizes." " The presence of the rert-butyl group apparently prevents this. The transient existence of 1,2-cycloheptadiene has also been shown," and both 1,2-cyclooctadiene and 1,2-cycloheptadiene have been isolated in platinum complexes." 1,2-Cyclohexadiene has been trapped at low temperatures, and its structure has been proved by spectral smdies." Cyclic allenes in general are less strained than their acetylenic isomers." The cyclic cumulene 1,2,3-cyclononatriene has also been synthesized and is reasonably stable in solution at room temperature in the absence of air." ... [Pg.187]

Mono-olefin and acetylene complexes of nickel, palladium and platinum... [Pg.461]

In a similar fashion, chromium ions Cr will reduce dissolved acetylene to ethylene and then are regenerated at the cathode from the Cr + ions that were formed in the reaction. Or, at a platinum electrode in a solution of AsO and AsO ions, the equilibrium potential of this redox system is not established. After the addition... [Pg.233]

When the platinum-catalyzed hydrothiolation was performed for acetylenic alcohols, intramolecular cyclization took place to afford a-methylene lactone 25 in up to 67% yield (Eq. 7.19) [30]. [Pg.224]

Benkeser and Tincher 128>, on the other hand, reduced acetylenes preferentially to trans olefins using solvated electrons generated at a platinum cathode by electrolytic reduction of lithium chloride in methylamine [lithium metal is formed from lithium ion at the cathode in this electrolysis its dissolution in methylamine generates the solvated electron and regenerates lithium... [Pg.40]

Our interest in silicon chemistry quite naturally led to a study of the hydrosilation reaction, the addition of the Si-H group across an olefin or an acetylene. This reaction is one of the most useful methods of making silicon-carbon bonds and is an important industrial process. Typically, homogeneous catalysts based on platinum, rhodium or ruthenium are used, and while very efficient, they are not recoverable(46). [Pg.221]

The first explicit information appeared in 1953 in two U.S. patents (9) which showed that platinum black as well as platinized asbestos or silica were effective for addition of trichlorosilane to olefins. Platinum on charcoal was unusually active with trichlorosilane and acetylene, ethylene, butadiene, vinyl chloride, or vinylidene fluoride. Temperatures as low as 130°C were sometimes employed. [Pg.408]

Platinum on carbon did almost exactly the same thing but required a temperature of about 100°C to do so. With excess acetylene, only III formed. With tcrt-butylacetylene no II formed, probably because of steric hindrance, but I and III formed readily. 3-Hexyne reacted more slowly, required heat with chloroplatinic acid, and formed exclusively c/s-3-di-chlorosilyl-3-hexene. Trichlorosilane with platinum on carbon also added (57) to 1-alkynes or to phenylacetylene exclusively by cis addition to give only trans adducts. Later works (55) indicate that chloroplatinic acid and other soluble catalysts also give exclusively cis addition with a wide variety of Si—H compounds. [Pg.444]

A macroreticular styrene-divinylbenzene copolymer substituted with cyanomethyl groups sorbs chloroplatinic acid from its aqueous solution. The complex containing 1.45% platinum was used to study the kinetics of addition of trichlorosilane to acetylene in the vapor phase at 100°C (59). [Pg.444]

The reductive cyclization of non-conjugated diynes is readily accomplished by treatment of the acetylenic substrate with stoichiometric amounts of low-valent titanium52 523 and zirconium complexes.53 533 Hence, it is interesting to note that while early transition metal complexes figure prominently as mediators of diyne reductive cyclization, to date, all catalyzed variants of this transformation employ late transition metal complexes based on nickel, palladium, platinum, and rhodium. Nevertheless, catalytic diyne reductive cyclization has received considerable attention and is a topic featured in several review articles. ... [Pg.511]

Species D is most likely an ethylidyne complex which forms from self-hydrogenation on the palladium surface. Such species along with species E have been suggested to be part of the compounds formed from platinum and acetylene. [Pg.426]

Fig. II. (a) Schematic representation of hydrocarbons adsorbed on the [111] plane of platinum. Intersections of the lines of triangular net denote positions of the centers of platinum atoms. (1) Cyclohexane (2) all-cis conformation of cij-l,3,5-hexatriene (3) transoid conformations of cis- and trans-1,3,5-hexatriene (S4). (b) Adsorption configurations of acetylene and ethylene found most probable according to LEED studies 141). Fig. II. (a) Schematic representation of hydrocarbons adsorbed on the [111] plane of platinum. Intersections of the lines of triangular net denote positions of the centers of platinum atoms. (1) Cyclohexane (2) all-cis conformation of cij-l,3,5-hexatriene (3) transoid conformations of cis- and trans-1,3,5-hexatriene (S4). (b) Adsorption configurations of acetylene and ethylene found most probable according to LEED studies 141).

See other pages where Platinum acetylene is mentioned: [Pg.300]    [Pg.308]    [Pg.300]    [Pg.308]    [Pg.374]    [Pg.184]    [Pg.1167]    [Pg.61]    [Pg.942]    [Pg.49]    [Pg.51]    [Pg.57]    [Pg.203]    [Pg.253]    [Pg.269]    [Pg.8]    [Pg.444]    [Pg.738]    [Pg.656]    [Pg.131]    [Pg.86]    [Pg.318]   
See also in sourсe #XX -- [ Pg.24 , Pg.40 , Pg.41 , Pg.110 , Pg.126 , Pg.127 , Pg.128 ]




SEARCH



Platinum acetylene complexes

Platinum acetylene compounds

Platinum complexes, substitution reactions acetylenes

© 2024 chempedia.info