Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plate columns column capacity

In this expression, Hlv is a function of column performance and the other two factors describe the influence of the particular separation problem at hand. A 5000-plate column, a capacity factor of 1 and s/v = 10 msec (rather conservative for modern efficient LC columns) would require a detector with < 0.45 sec. [Pg.114]

To minimize the multiple path and mass transfer contributions to plate height (equations 12.23 and 12.26), the packing material should be of as small a diameter as is practical and loaded with a thin film of stationary phase (equation 12.25). Compared with capillary columns, which are discussed in the next section, packed columns can handle larger amounts of sample. Samples of 0.1-10 )J,L are routinely analyzed with a packed column. Column efficiencies are typically several hundred to 2000 plates/m, providing columns with 3000-10,000 theoretical plates. Assuming Wiax/Wiin is approximately 50, a packed column with 10,000 theoretical plates has a peak capacity (equation 12.18) of... [Pg.564]

The term in equation 42 is called a Souders-Brown capacity parameter and is based on the tendency of the upflowing vapor to entrain Hquid with it to the plate above. The term E in equation 43 is called an E-factor. and E to be meaningful the cross-sectional area to which they apply must be specified. The capacity parameter is usually based on the total column cross section minus the area blocked for vapor flow by the downcomer(s). Eor the E-factor, typical operating ranges for sieve plate columns are... [Pg.168]

Plate-Column Capacity The maximum allowable capacity of a plate for handling gas and liquid flow is of primaiy importance because it fixes the minimum possible diameter of the column. For a constant hquid rate, increasing the gas rate results eventually in excessive entrainment and flooding. At the flood point it is difficult to obtain net downward flow of hquid, and any liquid fed to the column is carried out with the overheaa gas. Furthermore, the column inven-toiy of hquid increases, pressure drop across the column becomes quite large, and control becomes difficult. Rational design caUs for operation at a safe margin below this maximum aUowable condition. [Pg.1371]

These two types of flooding are usuaUy considered separately when a plate column is being rated for capacity. For identification purposes they are caUed entrainment flooding (or priming ) and downflow flooding. When counterflow action is destroyed by either type, transfer efficiency is lost and reasonable design hmits have been exceeded. [Pg.1371]

Calculation of column diameter (for packed columns, this is usually based on flooding conditions, and, for plate columns, on the optimum gas velocity or the liquid-handling capacity of the plate)... [Pg.2185]

This present chapter will not focus on the statistical theory of overlapping peaks and the deconvolution of complex mixtures, as this is treated in more detail in Chapter 1. It is worth remembering, however, that of all the separation techniques, it is gas chromatography which is generally applied to the analysis of the most complex mixtures that are encountered. Individual columns in gas chromatography can, of course, have extremely high individual peak capacities, for example, over 1000 with a 10 theoretical plates column (3), but even when columns such as these are... [Pg.46]

LC-LC coupling systems are also employed to perform separations requiring very large plate numbers. However, it has been demonstrated (see equation (5.20) that for coupled columns peak capacity increases linearly with the square root of n... [Pg.126]

Column diameter for a particular service is a function of the physical properties of the vapor and liquid at the tray conditions, efficiency and capacity characteristics of the contacting mechanism (bubble trays, sieve trays, etc.) as represented by velocity effects including entrainment, and the pressure of the operation. Unfortunately the interrelationship of these is not clearly understood. Therefore, diameters are determined by relations correlated by empirical factors. The factors influencing bubble cap and similar devices, sieve tray and perforated plate columns are somewhat different. [Pg.126]

Given the construction of the Poppe plot, the number of plates, the column length, the peak capacity, and the particle diameter are determined in the Schoenmakers et al. (2006) scheme all for the first-dimension column. These are then used to determine the second-dimension parameters that include the particle diameter, the number of plates, column length, and peak capacity. Other variables are utilized and optimized from this scheme. [Pg.129]

A typical HPLC separation using a 15-cm column of 15,000 theoretical plates produces peak capacity (Giddings, 1991) of about 80-100 under isocratic conditions and up to 150 under gradient conditions in 1 h(Eq. 7.3, n peak capacity, A number of theoretical plates of a column, and fR and t retention time of the last and the first peak of the chromatogram, respectively). An increase in the number of separated peaks per unit time can be achieved by increased separation speed made possible by monolithic silica columns (Deng et al., 2002 Volmer et al., 2002). This has also been shown for peptides and proteins (Minakuchi et al., 1998 Leinweber et al., 2003). [Pg.158]

Speed of separation Column capacity Retention factor, k Selectivity factor a Effective plate number, N... [Pg.42]

The column length and inner diameter are the two most important features required in column generation on microchips. The column separation capacity is measured in terms of number of plates, which is proportional to column length. But back pressure and analysis time are raised proportionally as column length increases. For gradient separations, column length is less a factor for resolution as separation is controlled by gradient rather than... [Pg.68]

Separation efficiency in terms of the number of theoretical plates per meter of column length varies inversely with column radius better separation is achieved on smaller diameter columns. Columns whose inner diameters are less than 100 um, however, are extremely difficult to Interface with normal inlets and detectors. In addition, their capacities are very limited, they are easily overloaded, and their behaviour with inlet splitters (which at the present time is the most practical means of introducing a sample on these very small bore columns) can be capricious. Even the 100 tun ID column suffers from these limitations skilled chromatographers have used them to good advantage, but at our present state-of-the-art, many will experience considerable frustration with these columns. [Pg.106]

Model unit operation to optimize operating -ariables (c.g. loading, bed length, flow rate and required plate count) ba.sed on thermodynamics (adsorption isotherm, separation factor, the column saturation capacity). [Pg.255]


See other pages where Plate columns column capacity is mentioned: [Pg.94]    [Pg.207]    [Pg.1346]    [Pg.1348]    [Pg.1387]    [Pg.232]    [Pg.224]    [Pg.432]    [Pg.345]    [Pg.94]    [Pg.125]    [Pg.625]    [Pg.173]    [Pg.116]    [Pg.93]    [Pg.302]    [Pg.324]    [Pg.94]    [Pg.175]    [Pg.82]    [Pg.175]    [Pg.185]    [Pg.1394]    [Pg.1169]    [Pg.1171]    [Pg.1210]    [Pg.1313]    [Pg.625]    [Pg.245]   
See also in sourсe #XX -- [ Pg.14 , Pg.15 , Pg.16 , Pg.17 , Pg.18 , Pg.19 , Pg.20 , Pg.21 , Pg.22 , Pg.23 , Pg.24 ]




SEARCH



Capacity plate

Column capacity

Column plate

© 2024 chempedia.info