Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plastocyanins copper

Pinacolone, o-(diphenylphosphino)benzoyl-coordination chemistry, 401 Piperidine, IV-hydroxy-metal complexes, 797 pA a values azole ligands, 77 Plant roots amino acids, 962 carboxylic acids, 962 Plastocyanin copper binding site, 557 copper(II) complexes, 772 copper(II) site in, 770 Platinum, dichlorobis(benzonitrile)-IR spectrum, 264 Platinum, cis-dichlorodianunine-antitumor activity, 34, 979 Platinum, ethylenebis(triphenylphosphine)-reactions with 5,6-dimethyl-2,l,3-benzothiadiazole, 194 Platinum blue formation, 265 Platinum complexes acetylacetone reactions, 380 amides, 491 amidines... [Pg.1092]

The EPR spectrum of the blue copper protein plastocyanin (Figure 3C) has gu > g > 2.00, and thus the copper site must have a dx2 y2 ground state. First, we are interested in determining the orientation of the dx2 y2 orbital relative to the distorted tetrahedral geometry observed in the protein crystal structure. Single crystal EPR spectroscopy allowed us to obtain this orientation and located the unique (i.e., z) direction in this distorted site (29). Plastocyanin crystallizes in an orthorhombic space group with four symmetry related molecules in the unit cell. The orientation of the plastocyanin copper sites in the unit cell are shown in... [Pg.135]

Structure and electron transfer reactivity of the blue copper protein, plastocyanin. A. G. Sykes, Chem. Soc. Rev., 1985,14, 283 (117). [Pg.68]

Blue copper proteins. A typical blue copper redox protein contains a single copper atom in a distorted tetrahedral environment. Copper performs the redox function of the protein by cycling between Cu and Cu. Usually the metal binds to two N atoms and two S atoms through a methionine, a cysteine, and two histidines. An example is plastocyanin, shown in Figure 20-29Z>. As their name implies, these molecules have a beautiful deep blue color that is attributed to photon-induced charge transfer from the sulfur atom of cysteine to the copper cation center. [Pg.1487]

In the blue, Type I copper proteins plastocyanin and azurin, the active-site structure comprises the trigonal array [CuN2S] of two histidine ligands and one cysteine ligand about the copper,... [Pg.752]

Copper proteins present interesting problems of structure for the copper(I) oxidation state. They are difficult to probe in detail, and what we do know of them suggests they are rarely regular or predictable.58 In plastocyanin the copper(I) coordination sphere is made up of three strongly... [Pg.872]

The electrons subsequently pass to plastocyanin (PC), which is a copper-containing protein. The Cu-containing redox center of this 10.5 kD monomer cycles between Cu(I) and Cu(II) oxidation states. The structure of PC shows that... [Pg.260]

This discussion of copper-containing enzymes has focused on structure and function information for Type I blue copper proteins azurin and plastocyanin, Type III hemocyanin, and Type II superoxide dismutase s structure and mechanism of activity. Information on spectral properties for some metalloproteins and their model compounds has been included in Tables 5.2, 5.3, and 5.7. One model system for Type I copper proteins39 and one for Type II centers40 have been discussed. Many others can be found in the literature. A more complete discussion, including mechanistic detail, about hemocyanin and tyrosinase model systems has been included. Models for the blue copper oxidases laccase and ascorbate oxidases have not been discussed. Students are referred to the references listed in the reference section for discussion of some other model systems. Many more are to be found in literature searches.50... [Pg.228]

The nature of the ligand donor atom and the stereochemistry at the metal ion can have a profound effect on the redox potential of redox-active metal ions. The standard redox potentials of Cu2+/Cu+, Fe3+/Fe2+, Mn3+/Mn2+, Co3+/Co2+, can be altered by more than 1.0 V by varying such parameters. A simple example of this effect is provided by the couple Cu2+/Cu+. These two forms of copper have quite different coordination geometries, and ligand environments, which are distorted towards the Cu(I) geometry, will raise the redox potential, as we will see later in the case of the electron transfer protein plastocyanin. [Pg.19]

Negative values for redox couple entropy have also been obtained for the Cu(II)/Cu(I) reduction, in aqueous medium, of the blue copper proteins stellacyanin, plastocyanin and azurin.14 The decrease in molecular disorder has been attributed in this case to the fact that the charge neutralization of the redox site (from + 1 to 0) favours the formation of hydrogen bonds between the solvent (water) and the copper centre.17... [Pg.599]

Plastocyanin from parsley, a copper protein of the chloroplast involved in electron transport during photosynthesis, has been reported to have a fluorescence emission maximum at 315 nm on excitation at 275 nm at pH 7 6 (2°8) gjncc the protein does not contain tryptophan, but does have three tyrosines, and since the maximum wavelength shifts back to 304 nm on lowering the pH to below 2, the fluorescence was attributed to the emission of the phenolate anion in a low-polarity environment. From this, one would have to assume that all three tyrosines are ionized. A closer examination of the reported emission spectrum, however, indicates that two emission bands seem to be present. If a difference emission spectrum is estimated (spectrum at neutral pH minus that at pH 2 in Figure 5 of Ref. 207), a tyrosinate-like emission should be obtained. [Pg.47]

M. T. Graziani, A. L. Agro, G. Rotilio, D. Barra, and B. Mondovi, Parsley plastocyanin. The possible presence of sulfhydryl and tyrosine in the copper environment, Biochemistry 13, 804-809 (1974). [Pg.63]

For the cytochrome c-plastocyanin complex, the kinetic effects of cross-linking are much more drastic while the rate of the intracomplex transfer is equal to 1000 s in the noncovalent complex where the iron-to-copper distance is expected to be about 18 A, it is estimated to be lower than 0.2 s in the corresponding covalent complex [155]. This result is all the more remarkable in that the spectroscopic and thermodynamic properties of the two redox centers appear weakly affected by the cross-linking process, and suggests that an essential segment of the electron transfer path has been lost in the covalent complex. Another system in which such conformational effects could be studied is the physiological complex between tetraheme cytochrome and ferredoxin I from Desulfovibrio desulfuricans Norway the spectral and redox properties of the hemes and of the iron-sulfur cluster are found essentially identical in the covalent and noncovalent complexes and an intracomplex transfer, whose rate has not yet been measured, takes place in the covalent species [156]. [Pg.33]

Fig. 4. View of the blue copper and a5Rupis59) centers in ruthenated Anabaena variabilis plastocyanin. The edge-edge distance is 11.9 A [39]... Fig. 4. View of the blue copper and a5Rupis59) centers in ruthenated Anabaena variabilis plastocyanin. The edge-edge distance is 11.9 A [39]...

See other pages where Plastocyanins copper is mentioned: [Pg.188]    [Pg.27]    [Pg.188]    [Pg.27]    [Pg.40]    [Pg.40]    [Pg.722]    [Pg.125]    [Pg.197]    [Pg.256]    [Pg.355]    [Pg.196]    [Pg.585]    [Pg.323]    [Pg.267]    [Pg.419]    [Pg.419]    [Pg.420]    [Pg.5]    [Pg.20]    [Pg.37]    [Pg.92]    [Pg.187]    [Pg.189]    [Pg.193]    [Pg.196]    [Pg.196]    [Pg.197]    [Pg.198]    [Pg.199]    [Pg.200]    [Pg.215]    [Pg.376]    [Pg.1]    [Pg.243]    [Pg.175]    [Pg.175]   
See also in sourсe #XX -- [ Pg.649 ]

See also in sourсe #XX -- [ Pg.649 ]




SEARCH



Copper enzymes plastocyanin

Copper plastocyanin

Copper plastocyanin structure

Copper proteins plastocyanin

Copper proteins, blue plastocyanin

Plastocyanin

Plastocyanin copper complexes

Plastocyanin copper site

Plastocyanin, blue copper center

Plastocyanins

Spectral properties, blue copper plastocyanin

© 2024 chempedia.info