Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plasma transferrin receptor

In humans, hemoglobin concentration and hematocrit provide information about iron utilization in erythropoiesis. These parameters, however, can be confounded by inflammation, pregnancy, dehydration, polycythemia, hemoglobinopathies, and by deficiencies of vitamin B12 or folic acid (Gibson 1990). Plasma ferritin reflects body iron stores, but is also confounded by inflammation, liver diseases, leukemia, Hodgkin s disease, or alcohol intake. Transferrin saturation and plasma transferrin receptor are valuable parameters to support the diagnosis of iron deficiency and ineffective erythropoiesis (Thorstensen and... [Pg.812]

Figure 5.10 Ribbon diagram of the transferrin receptor dimer depicted in its likely orientation with regard to the plasma membrane. One monomer is blue, the other is coloured according to domain the protease-like, apical and helical domains are red, green and yellow respectively the stalk is shown in grey, connected to the putative membrane spanning helices in black. Pink spheres indicate the location of Sm3+ ions. Reprinted with permission from Lawrence et ah, 1999. Copyright (1999) American Association for the Advancement of Science. Figure 5.10 Ribbon diagram of the transferrin receptor dimer depicted in its likely orientation with regard to the plasma membrane. One monomer is blue, the other is coloured according to domain the protease-like, apical and helical domains are red, green and yellow respectively the stalk is shown in grey, connected to the putative membrane spanning helices in black. Pink spheres indicate the location of Sm3+ ions. Reprinted with permission from Lawrence et ah, 1999. Copyright (1999) American Association for the Advancement of Science.
Figure 9.7 Iron transport by hepatocytes. Known proteins involved in iron transport across the plasma membrane of hapatocytes are represented. LMW = low molecular weight Trf = transferrin Trf-R = transferrin receptor HFE = hamochromatosis gene product 132m = 62-microglobulin 02-= superoxide OH- = hydroxyl radical FR = ferritin receptor SFT = stimulator of iron transport. Figure 9.7 Iron transport by hepatocytes. Known proteins involved in iron transport across the plasma membrane of hapatocytes are represented. LMW = low molecular weight Trf = transferrin Trf-R = transferrin receptor HFE = hamochromatosis gene product 132m = 62-microglobulin 02-= superoxide OH- = hydroxyl radical FR = ferritin receptor SFT = stimulator of iron transport.
The equivalent of the tryptic fragment of human transferrin receptor has been expressed in Chinese hamster ovary cells and its structure determined at a resolution of 0.32 nm (Lawrence et ah, 1999). The asymmetric unit of the crystals contains four transferrin receptor dimers. Interpretable electron density is found for the entire tryptic fragment except for Arg-121 at the amino terminus, and density is also seen for the first N-acetylglucosamine residue at each of the N-glycosylation sites. The transferrin receptor monomer is made up of three distinct domains, organized such that the dimer is butterfly shaped (Figure 5.10, Plate 7). The likely orientation of the dimer with respect to the plasma membrane has been assigned on the basis of the... [Pg.157]

Fluxes of iron from the plasma towards BM and other tissues can be quantified by ferrokinetic studies, using 59Fe and sophisticated computer models (Ricketts et ah, 1975 Ricketts and Cavill, 1978 Barosi et ah, 1978 Stefanelli et ah, 1980). Plasma iron turnover (PIT), erythroid iron turnover (EIT), non-erythroid iron turnover (NEIT), marrow iron turnover (MIT), and tissue iron turnover (TIT) could be calculated in many disorders of iron metabolism and in all kinds of anaemias. Iron is rapidly cleared from the plasma in iron deficiency and in haemolytic anaemias. If more iron is needed for erythropoiesis, more transferrin receptors (TfR) are expressed on erythroblasts, resulting in an increased flux of iron from intestinal mucosal cells towards the plasma. In haemolytic anaemias MPS, and subsequently hepatocytes, are overloaded. In hereditary haemochromatosis too much iron is absorbed by an intrinsic defect of gut mucosal cells. As this iron is not needed for erythropoiesis,... [Pg.247]

It seems clear that complexes 28 and 29 both enter cancer cells by transferrin-mediation. Tumor cells are known to have a high density of transferrin receptors, and this provides a route for the uptake of ruthenium (175). In normal blood plasma, transferrin is only one-third saturated with Fe(III) and therefore vacant sites are available for Ru(III) binding. Baker et al. have shown by X-ray crystallography that complex 29 binds to His-253 of apolactoferrin, one of the Fe(III) ligands in the iron binding cleft of the N-lobe, with displacement of a chloride ligand (176). Ruthenium(III) is well known to have a high affinity for solvent-exposed His side chains of proteins (177). Complex... [Pg.213]

Another example is uptake of the iron-containing protein, transferrin, which circulates in the blood. It binds to its receptor to form a complex that enters the cell via endocytosis. The iron is then released from the endosome for use in the cell (e.g. haemoglobin formation for erythrocyte production or cytochrome production in proliferating cells). The number of transferrin receptors in the plasma membrane increases in proliferating cells and the number in the liver is increased by cytokines during infection. This results in a lower concentration of iron in the blood which decreases the proliferation of invading pathogens (Chapters 15 and 18). [Pg.92]

Iron ion The protein transferrin binds ferric ions and transports them in the semm aronnd the body. The ions are taken np by cells via a transferrin receptor which is present in the plasma membrane. The receptor binds transferrin and the complex enters the cell where transferrin releases... [Pg.94]

Figure 15.17 The factors that influence the concentration of free iron in the cell. The two factors are the number of transferrin receptors in the plasma membrane and the concentration of apoferritin. Figure 15.17 The factors that influence the concentration of free iron in the cell. The two factors are the number of transferrin receptors in the plasma membrane and the concentration of apoferritin.
Absorption, transport, and storage of iron. Intestinal epithelial cells actively absorb inorganic iron and heme iron (H). Ferrous iron that is absorbed or released from absorbed heme iron in the intestine (1) is actively transported into the blood or complexed with apoferritin (AF) and stored as ferritin (F). In the blood, iron is transported by transferrin (Tf) to erythroid precursors in the bone marrow for synthesis of hemoglobin (Hgb) (2) or to hepatocytes for storage as ferritin (3). The transferrin-iron complexes bind to transferrin receptors (TfR) in erythroid precursors and hepatocytes and are internalized. After release of the iron, the TfR-Tf complex is recycled to the plasma membrane and Tf is released. Macrophages that phagocytize senescent erythrocytes (RBC) reclaim the iron from the RBC hemoglobin and either export it or store it as ferritin (4). Hepatocytes use several mechanisms to... [Pg.730]

The uptake of iron from transferrin into cells has been best studied for reticulocytes, where there is heavy demand for iron for the synthesis of heme. Reticulocytes and, by analogy, other mammalian cells have receptor molecules on their plasma surface which bind transferrin. Characterization of the transferrin receptor from rabbit reticulocytes suggests that it is probably a glycoprotein of molecular weight around 200 000. The number of receptor sites in cells varies in response to the conditions. For example, treatment of K562 cells with the efficient iron chelator desferrioxamine results in an increase in the total number of receptors for transferrin.1142... [Pg.671]

Boado et al. [28] devised delivery systems based on conjugates of streptavidin and the 0X26 monoclonal antibody directed to the transferrin receptor as a carrier for the transport of ASO. These delivery systems were found to transport peptide nucleic acid antisense molecules, but not ASO, across the BBB. These authors attributed this difference to preferential binding of phosphorothioate oligonucleotide to plasma protein instead of the antibody complex, which reduced their transport. [Pg.253]

In the bloodstream, ferric iron binds tightly to circulating plasma transferrin (TF) to form diferric transferrin (FeTF). Absorption of iron into erythrocytes depends on basolateral membrane receptor-mediated endocytosis of FeTF by transferrin receptor 1 (TfR 1). FeTF binds to TfR 1 on the surface of erythroid precursors. These complexes invaginate in pits on the cell surface to form endosomes. Proton pumps within the endosomes lower pH to promote the release of iron into the cytoplasm from transferrin. Once the cycle is completed,TF and TfR 1 are recycled back to the cell surface. TF and TfR 1 play similar roles in iron absorption at the basolateral membrane of crypt enterocytes (Parkilla et al., 2001 Pietrangelo, 2002). [Pg.337]


See other pages where Plasma transferrin receptor is mentioned: [Pg.115]    [Pg.253]    [Pg.154]    [Pg.156]    [Pg.156]    [Pg.161]    [Pg.162]    [Pg.163]    [Pg.237]    [Pg.248]    [Pg.249]    [Pg.253]    [Pg.253]    [Pg.260]    [Pg.263]    [Pg.299]    [Pg.340]    [Pg.353]    [Pg.157]    [Pg.379]    [Pg.127]    [Pg.348]    [Pg.31]    [Pg.177]    [Pg.731]    [Pg.732]    [Pg.841]    [Pg.23]    [Pg.741]    [Pg.128]    [Pg.184]    [Pg.73]    [Pg.249]    [Pg.246]    [Pg.37]    [Pg.40]    [Pg.90]    [Pg.90]   
See also in sourсe #XX -- [ Pg.812 ]




SEARCH



Transferrin

Transferrin receptor

Transferrins transferrin

© 2024 chempedia.info