Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pirkle stationary phases

Figure 6.4 Pirkle stationary phases showing IV-(3,5-dinitrobenzoyl)phenylglycine, ionically and covalently bonded to an aminopropyi silica. Figure 6.4 Pirkle stationary phases showing IV-(3,5-dinitrobenzoyl)phenylglycine, ionically and covalently bonded to an aminopropyi silica.
The Cellulose Based Stationary Phases The Pirkle Stationary Phases The Macrocyclic Glycopeptide Bonded Phases The Cyclodextrin Bonded Phases Bibliography... [Pg.2]

The Preparation of the Pirkle Stationary Phases The Preparation of Cellulose and Amylose Stationary Phases The Preparation of the Macrocyclic Glycopeptides Phases The Preparation of the Cyclodextrin Based Stationary Phases Column Packing Techniques... [Pg.547]

Nonpolar organic mobile phases, such as hexane with ethanol or 2-propanol as typical polar modifiers, are most commonly used with these types of phases. Under these conditions, retention seems to foUow normal phase-type behavior (eg, increased mobile phase polarity produces decreased retention). The normal mobile-phase components only weakly interact with the stationary phase and are easily displaced by the chiral analytes thereby promoting enantiospecific interactions. Some of the Pirkle-types of phases have also been used, to a lesser extent, in the reversed phase mode. [Pg.63]

W. H. Pirkle and B. C. Hamper, The direct preparative resolution of enantiomers by liquid chromatography on chiral stationary phases in Preparative Liquid Chromatography, B. A. Bidling-meyer (Ed.), Journal Chromatography Library Vol. 38, 3 Edition, Elsevier Science Publishers B. V, Amsterdam (1991) Chapter 7. [Pg.19]

The separation of bi-naphthol enantiomers can be performed using a Pirkle-type stationary phase, the 3,5-dinitrobenzoyl phenylglycine covalently bonded to silica gel. Eight columns (105 mm length) were packed with particle diameter of 25 0 fiva. The solvent is a 72 28 (v/v) heptane isopropanol mixture. The feed concentration is 2.9 g for each enantiomer. The adsorption equilibrium isotherms were determined by the Separex group and already reported in Equation (28) [33]. [Pg.243]

Popova and colleagues47 carried out TLC of oxidation products of 4,4 -dinitrodiphenyl sulphide (the sulphoxide and sulphone) on silica gel + a fluorescent indicator, using hexane-acetone-benzene-methanol(60 36 10 l) as solvent mixture. Morris130 performed GLC and TLC of dimethyl sulphoxide. For the latter, he applied a 6% solution of the sample in methanol to silica gel and developed with methanol-ammonia solution(200 3), visualizing with 2% aqueous Co11 thiocyanate-methanol(2 1). HPLC separations of chiral mixtures of sulphoxides have been carried out. Thus Pirkle and coworkers131-132 reported separations of alkyl 2,4-dinitrophenyl sulphoxides and some others on a silica-gel (Porosil)-bonded chiral fluoroalcoholic stationary phase, with the structure ... [Pg.120]

There is a wide variety of commercially available chiral stationary phases and mobile phase additives.32 34 Preparative scale separations have been performed on the gram scale.32 Many stationary phases are based on chiral polymers such as cellulose or methacrylate, proteins such as human serum albumin or acid glycoprotein, Pirkle-type phases (often based on amino acids), or cyclodextrins. A typical application of a Pirkle phase column was the use of a N-(3,5-dinitrobenzyl)-a-amino phosphonate to synthesize several functionalized chiral stationary phases to separate enantiomers of... [Pg.12]

Chiral stationary phases for the separation of enantiomers (optically active isomers) are becoming increasingly important. Among the first types to be synthesized were chiral amino acids ionically or covalently bound to amino-propyl silica and named Pirkle phases after their originator. The ionic form is susceptable to hydrolysis and can be used only in normal phase HPLC whereas the more stable covalent type can be used in reverse phase separations but is less stereoselective. Polymeric phases based on chiral peptides such as bovine serum albumin or a -acid glycoproteins bonded to... [Pg.124]

Initially, chiral stationary phases for chiral liquid chromatography were designed for preparative purposes, mostly based on the concept of three-point recognition .47 Pirkle and other scientists48 developed a series of chiral stationary phases that usually contain an aryl-substituted chiral compound connected to silica gel through a spacer. Figure 1-14 depicts the general concept and an actual example of such a chiral stationary phase. [Pg.28]

Pirkle and coworkers [59] compared retention and selectivity factors between HPLC and SFC using Poly Whelk-O chiral stationary phases and a-naphthyl-1-ethylamine carbamates. The results indicate that both retention and selectivity factors in SFC were higher than those in HPLC. This can be mainly attributed to the weaker solvating power of the carbon dioxide supercritical fluid as compared to a liquid such as methanol or hexane. [Pg.218]

Chiral separations result from the formation of transient diastereomeric complexes between stationary phases, analytes, and mobile phases. Therefore, a column is the heart of chiral chromatography as in other forms of chromatography. Most chiral stationary phases designed for normal phase HPLC are also suitable for packed column SFC with the exception of protein-based chiral stationary phases. It was estimated that over 200 chiral stationary phases are commercially available [72]. Typical chiral stationary phases used in SFC include Pirkle-type, polysaccharide-based, inclusion-type, and cross-linked polymer-based phases. [Pg.221]

New brush-type phases (donor-acceptor interactions) are appearing all the time. " Examples are stationary phases comprising quinine derivatives and trichloro-dicyanophenyl-L-a-amino acids as chiral selectors. Quinine carbamates, which are suitable for the separation of acidic molecules through an ionic interaction with the basic quinine group, are also commonly used but in general they are classified with the anion-exchange type of chiral selectors (see further) because of their interaction mechanism, even though r-donor, r-acceptor properties occur. (Some separations on Pirkle-type CSPs are shown in Table 2.)... [Pg.466]

There are numerous chiral stationary phases available commercially, which is a reflection of how difficult chiral separations can be and there is no universal phase which will separate all types of enantiomeric pair. Perhaps the most versatile phases are the Pirkle phases, which are based on an amino acid linked to aminopropyl silica gel via its carboxyl group and via its amino group to (a-naphthyl)ethylamine in the process of the condensation a substituted urea is generated. There is a range of these type of phases. As can be seen in Figure 12.23, the interactions with phase are complex but are essentially related to the three points of contact model. Figure 12.24 shows the separation of the two pairs of enantiomers (RR, SS, and RS, S,R) present in labetalol (see Ch. 2 p. 36) on Chirex 3020. [Pg.271]

Many types of chiral stationary phase are available. Pirkle columns contain a silica support with bonded aminopropyl groups used to bind a derivative of D-phenyl-glycine. These phases are relatively unstable and the selectivity coefficient is close to one. More recently, chiral separations have been performed on optically active resins or cyclodextrins (oligosaccharides) bonded to silica gel through a small hydrocarbon chain linker (Fig. 3.11). These cyclodextrins possess an internal cavity that is hydro-phobic while the external part is hydrophilic. These molecules allow the selective inclusion of a great variety of compounds that can form diastereoisomers at the surface of the chiral phase leading to reversible complexes. [Pg.56]


See other pages where Pirkle stationary phases is mentioned: [Pg.262]    [Pg.270]    [Pg.327]    [Pg.454]    [Pg.455]    [Pg.473]    [Pg.548]    [Pg.270]    [Pg.262]    [Pg.270]    [Pg.327]    [Pg.454]    [Pg.455]    [Pg.473]    [Pg.548]    [Pg.270]    [Pg.63]    [Pg.63]    [Pg.64]    [Pg.66]    [Pg.242]    [Pg.287]    [Pg.287]    [Pg.308]    [Pg.460]    [Pg.51]    [Pg.154]    [Pg.339]    [Pg.87]    [Pg.222]    [Pg.24]    [Pg.463]    [Pg.271]    [Pg.22]    [Pg.23]    [Pg.362]    [Pg.362]    [Pg.1267]   
See also in sourсe #XX -- [ Pg.219 ]




SEARCH



Pirkle

Pirkle phases

© 2024 chempedia.info