Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pigments optical properties

The value of pigments results from their physical—optical properties. These ate primarily deterrniaed by the pigments physical characteristics (crystal stmcture, particle size and distribution, particle shape, agglomeration, etc) and chemical properties (chemical composition, purity, stabiUty, etc). The two most important physical—optical assets of pigments are the abiUty to color the environment in which they ate dispersed and to make it opaque. [Pg.4]

Mica [12001 -26-2]—Cl Pigment White 20, Cl No. 77019. A white powder obtained from the naturally occurring mineral muscovite mica, consisting predominantly of a potassium aluminum siHcate, [1327-44-2] H2KAl2(Si0 2- Mica may be identified and semiquantitatively determined by its characteristic x-ray diffraction pattern and by its optical properties. [Pg.453]

Optical Properties. Haze is the most common optical property problem that depends on colorants. Because dyes ate dissolved into the resin system, they contribute Htde or no practical haze to the system. Pigments can have significant haze, which is a combination of the pigment itself and the quahty of dispersion of the pigment. In an opaque appHcation haze is not a concern, but in transparent or translucent appHcations haze development becomes an important criterion in colorant evaluation. [Pg.457]

By the use of microstructured mixers, pigment and other particulate syntheses can be improved. In this way, finer particles with more uniform size distribution were yielded for the commercial azo pigment Yellow 12 (see Fig. 2) [11]. The particles formed in the microstructured mixer have better optical properties such as the glossiness or transparency at similar tinctorial power. Since the micro-mixer made pigments have more intense colour, lower contents of the costly raw material in the commercial dye products can now be employed which increases the profitability of the pigment manufacture. [Pg.32]

The chapters cover the following areas (i) use of coordination complexes in all types of catalysis (Chapters 1-11) (ii) applications related to the optical properties of coordination complexes, which covers fields as diverse as solar cells, nonlinear optics, display devices, pigments and dyes, and optical data storage (Chapters 12-16) (iii) hydrometallurgical extraction (Chapter 17) (iv) medicinal and biomedical applications of coordination complexes, including both imaging and therapy (Chapters 18-22) and (v) use of coordination complexes as precursors to semiconductor films and nanoparticles (Chapter 23). As such, the material in this volume ranges from solid-state physics to biochemistry. [Pg.1066]

In the case of paints and printing inks, the initial preparations will be in the semi-solid state because solvents are needed both in the process of dispersing the pigment in the paint or ink medium and for application purposes. These solvents dry out after the paint or ink is applied. When making coloured plastic articles, both heating and solvents may be used to aid dispersion in the plastic medium as part of the moulding process. However, from the viewpoint of the optical properties in all of these pigment uses, what is most important is that each of these media has a refractive index close to 1.5. [Pg.82]

Many inert pigments (often known as fillers) are incorporated into paper in addition to the cellulosic fibres. They may be added to improve certain optical properties—in particular opacity and brightness—or simply as a cheap replacement for costly fibre. The two most common pigments are kaolin (china clay) and chalk (limestone), but talc and speciality pigments such as titanium dioxide are also used. The particle size for general purpose fillers is normally expressed as an equivalent spherical diameter (esd) and this is determined from sedimentation data. Values for the common paper-... [Pg.92]

This section will discuss some important concepts from coloristic practice and the optical properties of pigmented systems. Space considerations permit a treatment of only the most vital concepts. The reader must consult the literature for further details and accounts of special problems [1], A review on the effect of crystal structure on color application properties was published [2],... [Pg.47]

It has often been observed that the coloristic properties of an organic pigment are a function not only of the size of particles but also of their shape. This is due to the anisotropy of the optical properties in different crystallographic directions within the crystal forms of a pigment. In 1974 [5, 6], it was demonstrated that of the equally sized but differently shaped particles of beta copper phthalocyanine blue, the almost completely cubic, i.e., more or less isometric form produces greenish blue shades, while acicular forms are responsible for reddish blue hues. The optical behavior of ordered pigment particles in systems has been reported in the literature [7, 8]. [Pg.125]

Gorton, H.L. and Vogelmann, T.C., Effects of epidermal cell shape and pigmentation on optical properties of Antirrhinum petals at visible and ultraviolet wavelengths, Plant Physiol, 112, 879, 1996. [Pg.428]

Eller, B.M., Glattli, R., and Elach, B., Optical properties and pigments of sun and shade leaves of the beech (Fagus silvatica L.) and the copper-beech (Fagus silvatica cv. Atropunicea), Flora, 171, 170, 1981. [Pg.430]

The effect of particle size on optical properties of pigments is described in Section 1.3. [Pg.15]

Figure 4. The relationships between the optical properties of pigments and their theoretical basis... Figure 4. The relationships between the optical properties of pigments and their theoretical basis...
In many inorganic pigments, lanthanides and transition elements are responsible for color. Metal oxides and oxide hydroxides are, however, also important as colored pigments because of their optical properties, low price, and ready availability. Colored pigments based on oxides and oxide hydroxides are either composed of a single component or mixed phases. In the latter, color is obtained by incorporation of appropriate cations. [Pg.83]


See other pages where Pigments optical properties is mentioned: [Pg.370]    [Pg.371]    [Pg.417]    [Pg.4]    [Pg.5]    [Pg.9]    [Pg.207]    [Pg.630]    [Pg.959]    [Pg.6]    [Pg.464]    [Pg.148]    [Pg.425]    [Pg.24]    [Pg.24]    [Pg.327]    [Pg.520]    [Pg.726]    [Pg.726]    [Pg.390]    [Pg.390]    [Pg.48]    [Pg.82]    [Pg.119]    [Pg.671]    [Pg.131]    [Pg.2]    [Pg.5]    [Pg.178]    [Pg.284]    [Pg.27]    [Pg.18]    [Pg.29]    [Pg.43]   
See also in sourсe #XX -- [ Pg.32 ]




SEARCH



Optical properties metallic pigments

Optical properties of pigments

Optical properties pearlescent pigments

Pigment properties

© 2024 chempedia.info