Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Physics basics pressure

Basically, the measured value and the parameter of clinical interest have to be distinguished, whereas the clinical parameter may be calculated by use of one or more measured values. The physical variables pressure, flow, and temperature yield information of different kinds curves as a function of time, distinct values measured at certain moments of respiration phases, and derived values as presented in Figure 23-2. [Pg.359]

One more experimental result, which is important for PT is as follows. Only polar liquids fill conical capillaries from both sides. We used various penetrants to fill conical defects Pion , LZh-6A , LZhT , LUM-9 etc. It was established that only the penetrants containing polar liquid as the basic liquid component (various alcohols, water and others) manifest two-side filling phenomenon. This result gives one more confirmation of the physical mechanism of the phenomenon, based on liquid film flow, because the disjoining pressure strongly depends just on the polarity of a liquid. [Pg.618]

Ammonia is a colourless gas at room temperature and atmospheric pressure with a characteristic pungent smell. It is easily liquefied either by cooling (b.p. 240 K) or under a pressure of 8-9 atmospheres at ordinary temperature. Some of its physical and many of its chemical properties are best understood in terms of its structure. Like the other group head elements, nitrogen has no d orbitals available for bond formation and it is limited to a maximum of four single bonds. Ammonia has a basic tetrahedral arrangement with a lone pair occupying one position ... [Pg.216]

Pressure. Most pressure measurements are based on the concept of translating the process pressure into a physical movement of a diaphragm, bellows, or a Bourdon element. For electronic transmission, these basic elements are coupled with an electronic device for transforming a physical movement associated with the element into an electronic signal proportional to the process pressure, eg, a strain gauge or a linear differential variable transformer (LDVT). [Pg.65]

An overview of some basic mathematical techniques for data correlation is to be found herein together with background on several types of physical property correlating techniques and a road map for the use of selected methods. Methods are presented for the correlation of observed experimental data to physical properties such as critical properties, normal boiling point, molar volume, vapor pressure, heats of vaporization and fusion, heat capacity, surface tension, viscosity, thermal conductivity, acentric factor, flammability limits, enthalpy of formation, Gibbs energy, entropy, activity coefficients, Henry s constant, octanol—water partition coefficients, diffusion coefficients, virial coefficients, chemical reactivity, and toxicological parameters. [Pg.232]

Basic to establishing whether power recovery is even feasible, let alone economical, are considerations of the flowing-fluid capacity available, the differential pressure available for the power recovery, and corrosive or erosive properties of the fluid stream. A further important consideration in feasibihty and economics is the probable physical location, with respect to each other, of fluid source, power-production point, and final fluid destination. In general, the tendency has been to locate the power-recoveiy driver and its driven unit where dictated by the driven-unit requirement and pipe the power-recoveiy fluid to and away from the driver. While early installations were in noncorrosive, nonerosive services such as rich-hydrocarbon absorption oil, the trend has been to put units into mildly severe seiwices such as amine plants, hot-carbonate units, and hydrocracker letdown. [Pg.2524]

Enough data must be supplied to rate the compressor. For example, the mass flows, inlet and outlet pressure, inlet temperatures, type of gas or gas physical constants need to be itemized. The basic data must be very clearly stated and complete to the extent necessary to achieve a common understanding between the user and vendor. [Pg.441]

From the calibration point of view, manometers can be divided into two groups. The first, fluid manometers, are fundamental instruments, where the indication of the measured quantity is based on a simple physical factor the hydrostatic pressure of a fluid column. In principle, such instruments do not require calibration. In practice they do, due to contamination of the manometer itself or the manometer fluid and different modifications from the basic principle, like the tilting of the manometer tube, which cause errors in the measurement result. The stability of high-quality fluid manometers is very good, and they tend to maintain their metrological properties for a long period. [Pg.1151]

This chapter introduces the first law of thermodynamics and its applications in three main parts. The first part introduces the basic concepts of thermodynamics and the experimental basis of the first law. The second part introduces enthalpy as a measure of the energy transferred as heat during physical changes at constant pressure. The third part shows how the concept of enthalpy is applied to a variety of chemical changes, an important aspect of bioenergetics, the use of energy in biological systems. [Pg.336]

On the continuum level of gas flow, the Navier-Stokes equation forms the basic mathematical model, in which dependent variables are macroscopic properties such as the velocity, density, pressure, and temperature in spatial and time spaces instead of nf in the multi-dimensional phase space formed by the combination of physical space and velocity space in the microscopic model. As long as there are a sufficient number of gas molecules within the smallest significant volume of a flow, the macroscopic properties are equivalent to the average values of the appropriate molecular quantities at any location in a flow, and the Navier-Stokes equation is valid. However, when gradients of the macroscopic properties become so steep that their scale length is of the same order as the mean free path of gas molecules,, the Navier-Stokes model fails because conservation equations do not form a closed set in such situations. [Pg.97]

The various physical methods in use at present involve measurements, respectively, of osmotic pressure, light scattering, sedimentation equilibrium, sedimentation velocity in conjunction with diffusion, or solution viscosity. All except the last mentioned are absolute methods. Each requires extrapolation to infinite dilution for rigorous fulfillment of the requirements of theory. These various physical methods depend basically on evaluation of the thermodynamic properties of the solution (i.e., the change in free energy due to the presence of polymer molecules) or of the kinetic behavior (i.e., frictional coefficient or viscosity increment), or of a combination of the two. Polymer solutions usually exhibit deviations from their limiting infinite dilution behavior at remarkably low concentrations. Hence one is obliged not only to conduct the experiments at low concentrations but also to extrapolate to infinite dilution from measurements made at the lowest experimentally feasible concentrations. [Pg.267]


See other pages where Physics basics pressure is mentioned: [Pg.158]    [Pg.490]    [Pg.89]    [Pg.503]    [Pg.309]    [Pg.296]    [Pg.399]    [Pg.248]    [Pg.787]    [Pg.900]    [Pg.2423]    [Pg.215]    [Pg.129]    [Pg.171]    [Pg.117]    [Pg.467]    [Pg.15]    [Pg.37]    [Pg.159]    [Pg.303]    [Pg.987]    [Pg.1139]    [Pg.600]    [Pg.208]    [Pg.120]    [Pg.50]    [Pg.9]    [Pg.412]    [Pg.172]    [Pg.225]    [Pg.657]    [Pg.29]    [Pg.25]    [Pg.295]    [Pg.133]    [Pg.20]    [Pg.164]    [Pg.241]    [Pg.58]    [Pg.71]   
See also in sourсe #XX -- [ Pg.68 , Pg.69 , Pg.70 , Pg.71 , Pg.72 , Pg.73 , Pg.74 , Pg.75 ]




SEARCH



Physics basics

© 2024 chempedia.info