Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Physical properties, infrared

Braker, W., and A. L. Mossman, 1980, Matheson Gas Data Book, 6th ed., Matheson Div. Searle Medical Producls, Lyndhurst. N.J., 07071. Although this volume does not present methods of purification, it does provide information which is useful in the handling of gases, such as tabulations of physical properties, infrared spectra (sometimes showing impurities which are not identified as such), safety information, and handling instructions. [Pg.54]

Thiazolyl sulfamic acids, rearrangement of sulfonic acid, 70 rearrangement to sulfonic acid, 75 by sulfonation, 75 2-Thiazolyl sulfenyl chloride, transformation to, thiazolyl disulfides. 412 2-Thiazolyl sulfide, in hydrocarbon synthesis, 406 oxidation of, with m-chloroperbenzoic acid, 415 with CrOj, 415 with Hj02,405,415 with KMn04,415 physical properties, infrared, 405 NMR, 404 pKa, 404 ultraviolet, 404 preparation of, from 2-halothiazoles and 5-Thiazolyl sulfides, bis-5-thiazolyl sulfide, oxidation of, 415 general, 418 5-(2-hydroxythiazolyl)phenyl sulfide case, 418 physical properties, 418 preparation of, 417-418 table of compounds, 493-496 uses of. 442 2-Thiazolyl sulfinic acid, decomposition of, 413 preparation of, from 2-acetamidothiazole sulfonyl chloride, 413 from A-4-thiazoline-2-thione and H, 0, 393,413 table of compounds, 472-473 5-Thiazolyl sulfinic add, preparation of,... [Pg.301]

Physical properties Infrared emissivity and absorbance Acoustic insulation, absorption Light transmission... [Pg.183]

Physical properties of A-4-thiazoline-2-one and derivatives have received less attention than those of A-4-thiazoline-2-thiones. For the protomeric equilibrium, data obtained by infrared spectroscopy favors fbrm 51a in chloroform (55, 96, 887) and in the solid state (36. 97. 98) (Scheme 23). The same structural preference is suggested by the ultraviolet spectroscopy studies of Sheinker (98), despite the fact that previous studie.s in methanol (36) suggested the presence of both 51a and... [Pg.387]

Copper, nickel, cobalt, iron, and zinc (270) for their physical properties using ultraviolet and infrared spectrometry (271). [Pg.392]

Analytical investigations may be undertaken to identify the presence of an ABS polymer, characterize the polymer, or identify nonpolymeric ingredients. Fourier transform infrared (ftir) spectroscopy is the method of choice to identify the presence of an ABS polymer and determine the acrylonitrile—butadiene—styrene ratio of the composite polymer (89,90). Confirmation of the presence of mbber domains is achieved by electron microscopy. Comparison with available physical property data serves to increase confidence in the identification or indicate the presence of unexpected stmctural features. Identification of ABS via pyrolysis gas chromatography (91) and dsc ((92) has also been reported. [Pg.204]

Most hydrocarbon resins are composed of a mixture of monomers and are rather difficult to hiUy characterize on a molecular level. The characteristics of resins are typically defined by physical properties such as softening point, color, molecular weight, melt viscosity, and solubiHty parameter. These properties predict performance characteristics and are essential in designing resins for specific appHcations. Actual characterization techniques used to define the broad molecular properties of hydrocarbon resins are Fourier transform infrared spectroscopy (ftir), nuclear magnetic resonance spectroscopy (nmr), and differential scanning calorimetry (dsc). [Pg.350]

Tables 2,3, and 4 outline many of the physical and thermodynamic properties ofpara- and normal hydrogen in the sohd, hquid, and gaseous states, respectively. Extensive tabulations of all the thermodynamic and transport properties hsted in these tables from the triple point to 3000 K and at 0.01—100 MPa (1—14,500 psi) are available (5,39). Additional properties, including accommodation coefficients, thermal diffusivity, virial coefficients, index of refraction, Joule-Thorns on coefficients, Prandti numbers, vapor pressures, infrared absorption, and heat transfer and thermal transpiration parameters are also available (5,40). Thermodynamic properties for hydrogen at 300—20,000 K and 10 Pa to 10.4 MPa (lO " -103 atm) (41) and transport properties at 1,000—30,000 K and 0.1—3.0 MPa (1—30 atm) (42) have been compiled. Enthalpy—entropy tabulations for hydrogen over the range 3—100,000 K and 0.001—101.3 MPa (0.01—1000 atm) have been made (43). Many physical properties for the other isotopes of hydrogen (deuterium and tritium) have also been compiled (44). Tables 2,3, and 4 outline many of the physical and thermodynamic properties ofpara- and normal hydrogen in the sohd, hquid, and gaseous states, respectively. Extensive tabulations of all the thermodynamic and transport properties hsted in these tables from the triple point to 3000 K and at 0.01—100 MPa (1—14,500 psi) are available (5,39). Additional properties, including accommodation coefficients, thermal diffusivity, virial coefficients, index of refraction, Joule-Thorns on coefficients, Prandti numbers, vapor pressures, infrared absorption, and heat transfer and thermal transpiration parameters are also available (5,40). Thermodynamic properties for hydrogen at 300—20,000 K and 10 Pa to 10.4 MPa (lO " -103 atm) (41) and transport properties at 1,000—30,000 K and 0.1—3.0 MPa (1—30 atm) (42) have been compiled. Enthalpy—entropy tabulations for hydrogen over the range 3—100,000 K and 0.001—101.3 MPa (0.01—1000 atm) have been made (43). Many physical properties for the other isotopes of hydrogen (deuterium and tritium) have also been compiled (44).
Infrared, uv, nmr spectra (66), and photoelectron spectra have been reviewed (67). Physical properties of siHcon peroxides are summarized in Reference 43. Other physical properties, eg, dipole moments, dihedral angles, and heats of combustion ate Hsted in Reference 68. The oxygen—oxygen bond strengths of various diaLkyl peroxides have been reported (69). [Pg.106]

The crystalline mineral silicates have been well characterized and their diversity of stmcture thoroughly presented (2). The stmctures of siHcate glasses and solutions can be investigated through potentiometric and dye adsorption studies, chemical derivatization and gas chromatography, and laser Raman, infrared (ftir), and Si Fourier transform nuclear magnetic resonance ( Si ft-nmr) spectroscopy. References 3—6 contain reviews of the general chemical and physical properties of siHcate materials. [Pg.3]

The physical properties of tellurium are generally anistropic. This is so for compressibility, thermal expansion, reflectivity, infrared absorption, and electronic transport. Owing to its weak lateral atomic bonds, crystal imperfections readily occur in single crystals as dislocations and point defects. [Pg.384]

The use of the Hammett equation has also been extended to several new types of applications. Since these are not germane to the subject matter of the present chapter, we wiU simply mention work on applications to ethylenic and acetylenic compounds the various applications to physical properties, such as infrared frequencies and intensities, ultraviolet spectra, polarographic half-wave potentials, dipole moments,NMR and NQR spectra,and solubility data and applications to preparative data and biological activity. [Pg.212]


See other pages where Physical properties, infrared is mentioned: [Pg.139]    [Pg.238]    [Pg.216]    [Pg.25]    [Pg.359]    [Pg.142]    [Pg.486]    [Pg.80]    [Pg.317]    [Pg.208]    [Pg.85]    [Pg.458]    [Pg.220]    [Pg.126]    [Pg.66]    [Pg.427]    [Pg.142]    [Pg.333]    [Pg.147]    [Pg.126]   
See also in sourсe #XX -- [ Pg.405 ]




SEARCH



Near-infrared spectroscopy physical properties

Physical properties, infrared ultraviolet

© 2024 chempedia.info