Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Physical chemistry transition state

Voth G A and Hochstrasser R M 1996 Transition state dynamics and relaxation processes in solutions a frontier of physical chemistry 100 13034M9... [Pg.3053]

In a similar way, computational chemistry simulates chemical structures and reactions numerically, based in full or in part on the fundamental laws of physics. It allows chemists to study chemical phenomena by running calculations on computers rather than by examining reactions and compounds experimentally. Some methods can be used to model not only stable molecules, but also short-lived, unstable intermediates and even transition states. In this way, they can provide information about molecules and reactions which is impossible to obtain through observation. Computational chemistry is therefore both an independent research area and a vital adjunct to experimental studies. [Pg.3]

This correlation between /7-values for rates and equilibria reflects a long-established principle of physical organic chemistry, the so-called Hammond postulate (Hammond, 1955 see also Farcasiu, 1975). This postulate states that in a series of related reactions the transition state becomes more product-like as the positive enthalpy differences between reagents and products increase. [Pg.157]

Models and theories have been developed by scientists that allow a good description of the double layers at each side of the surface either at equilibrium, under steady-state conditions, or under transition conditions. Only the surface has remained out of reach of the science developed, which cannot provide a quantitative model that describes the surface and surface variations during electrochemical reactions. For this reason electrochemistry, in the form of heterogeneous catalysis or heterogeneous catalysis has remained an empirical part of physical chemistry. However, advances in experimental methods during the past decade, which allow the observation... [Pg.307]

The last chapter in this introductory part covers the basic physical chemistry that is required for using the rest of the book. The main ideas of this chapter relate to basic thermodynamics and kinetics. The thermodynamic conditions determine whether a reaction will occur spontaneously, and if so whether the reaction releases energy and how much of the products are produced compared to the amount of reactants once the system reaches thermodynamic equilibrium. Kinetics, on the other hand, determine how fast a reaction occurs if it is thermodynamically favorable. In the natural environment, we have systems for which reactions would be thermodynamically favorable, but the kinetics are so slow that the system remains in a state of perpetual disequilibrium. A good example of one such system is our atmosphere, as is also covered later in Chapter 7. As part of the presentation of thermodynamics, a section on oxidation-reduction (redox) is included in this chapter. This is meant primarily as preparation for Chapter 16, but it is important to keep this material in mind for the rest of the book as well, since redox reactions are responsible for many of the elemental transitions in biogeochemical cycles. [Pg.2]

Even the photoelectron spectroscopy of closed-shell molecules is valuable for the physical chemistry of radicals because a difference between the nth and the first adiabatic ionization potentials determines the excitation energy in a radical cation for a transition from the ground doublet state to the (n — 1) excited doublet state. [Pg.352]

Ames Laboratory (Iowa State University, USA) investigating new solid state phases based on reduced rare earth halides. Since 1993, she has held a position at the University Jaume 1 of Castello (Spain) and became Associate Professor of Physical Chemistry in 1995. During the second semester of 2005, she held a visiting professor position at the Laboratory of Chemistry, Molecular Engineering and Materials of the CNRS-Universtity of Angers (France). Her research has been focussed on the chemistry of transition metal clusters with special interest in multifunctional molecular materials and the relationship between the molecular and electronic structures of these systems with their properties. She is currently coauthor of around 80 research papers on this and related topics. [Pg.369]

Wang, X. and Andrews, L. (2002) Infrared Spectra and DFT Calculations for the Gold Hydrides AuH, (H2)AuH, and the AuHs Transition State Stabilized in (H2) AuHs. The Journal of Physical Chemistry A, 106, 3744-3748. [Pg.232]

As might be expected, the results from both theory and experiment suggest that the solution is more than a simple spectator, and can participate in the surface physicochemical processes in a number of important ways [Cao et al., 2005]. It is well established from physical organic chemistry that the presence of a protic or polar solvent can act to stabilize charged intermediates and transition states. Most C—H, O—H, C—O, and C—C bond breaking processes that occur at the vapor/metal interface are carried out homolytically, whereas, in the presence of aqueous media, the hetero-lytic pathways tend to become more prevalent. Aqueous systems also present the opportunity for rapid proton transfer through the solution phase, which opens up other options in terms of reaction and diffusion. [Pg.95]

As the understanding of the ionic intermediates has progressed, advantage has been taken of the fact that bromination, like SN1 heterolysis, is a carbocation-forming reaction. Kinetic data on this addition have therefore been used to examine in detail how the basic concepts of physical organic chemistry work as regards transition-state shifts with reactivity (Ruasse et al, 1984). Bromination lends itself particularly well to the quantitative application of the BEMA HAPOTHLE (acronym for Bell, Marcus, Hammond, Polanyi, Thornton and Leffler Jencks, 1985). In particular, it has been possible to evaluate the transition-state dependence on the solvent and substituents. The major disadvantage that bromination shares with many... [Pg.209]

One of the major objectives of physical organic chemistry is the detailed description of transition states in terms of nuclear positions, charge distributions, and solvation requirements. A considerable aid to this task is provided for many reaction series by the existence of extrathermodynamic relationships, whose mathematical simplicity largely arises from extensive cancellation of the contribution to the free-energy change from the part of the molecule outside the reaction zone. [Pg.84]

The physical organic chemistry of very high-spin polyradicals, 40, 153 Thermodynamic stabilities of carbocations, 37, 57 Topochemical phenomena in solid-slate chemistry, 15, 63 Transition state analysis using multiple kinetic isotope effects, 37, 239 Transition state structure, crystallographic approaches to, 29, 87 Transition state structure, in solution, effective charge and 27, 1... [Pg.361]

The ENDOR techniques, of course, are not confined to studies of transition metal complexes. A fast growing interest on electron nuclear double and multiple resonance experiments is also noticed in other fields of natural sciences, such as radical, radiation and polymer chemistry, solid state physics, biophysics and mineralogy. [Pg.106]

A good deal of this work had no impact in the development of models of molecular structure and the elucidation of reaction mechanisms one reason was Perrin s own coolness to quantum wave mechanics. 108 Another, according to Oxford s Harold Thompson, who studied with Nernst and Fritz Haber, was that researchers like Lecomte "did not know enough chemistry he was a physicist." 109 Perrin, too, approached physical chemistry as a physicist, not as a chemist. He had little real interest or knowledge of organic chemistry. But what made his radiation hypothesis attractive to many chemists was his concern with transition states and the search for a scheme of pathways defining chemical kinetics. [Pg.147]

Although conformational changes are essential features of proteins, the conformational basis of protein activity is not yet understood at the molecular and atomic levels. It is generally assumed that the mechanism of enzyme-catalyzed reactions would he defined if all the intermediates and transition states between the initial and final stages, as well as the rate constants, could be characterized. But in spite of constant progress in such characterization, most enzymatic mechanisms are not understood in terms of physical organic chemistry and enzyme activity is still regarded as a miracle as compared to classical catalysis. [Pg.246]

Inorganic and physical chemistry Electronic configurations and oxidation states of transition metals... [Pg.22]

This change in packing is thus analogous conceptually to the three-dimensional P-V isotherms, as is well known in classical physical chemistry (Gaines, 1966 Adamson and Gast, 1997 Birdi, 1989). We know that, as the pressure, P, is increased on a gas in a container, when T < Tcr, the molecules approach closer, and transition to a liquid phase takes place. Further compression of the liquid state results in the formation of a solid phase. [Pg.72]

Those for the reactants can be evaluated using conventional techniques discussed in physical chemistry texts estimating the partition functions for the transition state requires making assumptions concerning the nature of the transition state. [Pg.141]

Golden, D. M. 1979. Experimental and theoretical examples of the value and limitations of Transition State Theory. The Journal of Physical Chemistry, 83, 108-113. [Pg.592]


See other pages where Physical chemistry transition state is mentioned: [Pg.350]    [Pg.834]    [Pg.1119]    [Pg.2593]    [Pg.2]    [Pg.390]    [Pg.314]    [Pg.96]    [Pg.192]    [Pg.383]    [Pg.78]    [Pg.344]    [Pg.139]    [Pg.141]    [Pg.267]    [Pg.285]    [Pg.709]    [Pg.142]    [Pg.428]    [Pg.243]    [Pg.327]    [Pg.472]    [Pg.196]    [Pg.156]    [Pg.115]    [Pg.296]    [Pg.60]    [Pg.5]    [Pg.286]    [Pg.288]   
See also in sourсe #XX -- [ Pg.140 ]




SEARCH



Chemistry physical

Physical chemistry physics

Physical state

Transition chemistry

© 2024 chempedia.info