Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Physical adsorption energy

The present discussion is restricted to an introductory demonstration of how, in principle, adsorption data may be employed to determine changes in the solid-gas interfacial free energy. A typical adsorption isotherm (of the physical adsorption type) is shown in Fig. X-1. In this figure, the amount adsorbed per gram of powdered quartz is plotted against P/F, where P is the pressure of the adsorbate vapor and P is the vapor pressure of the pure liquid adsorbate. [Pg.350]

Vibrational energy states are too well separated to contribute much to the entropy or the energy of small molecules at ordinary temperatures, but for higher temperatures this may not be so, and both internal entropy and energy changes may occur due to changes in vibrational levels on adsoiption. From a somewhat different point of view, it is clear that even in physical adsorption, adsorbate molecules should be polarized on the surface (see Section VI-8), and in chemisorption more drastic perturbations should occur. Thus internal bond energies of adsorbed molecules may be affected. [Pg.584]

Chemisorption may be rapid or slow and may occur above or below the critical temperature of the adsorbate. It is distinguishable, qualitatively, from physical adsorption in that chemical specihcity is higher and that the energy of adsorption is large enough to suggest that full chemical bonding has occurred. Gas that is chemisorbed may be difficult to remove, and desorption may be... [Pg.599]

The following several sections deal with various theories or models for adsorption. It turns out that not only is the adsorption isotherm the most convenient form in which to obtain and plot experimental data, but it is also the form in which theoretical treatments are most easily developed. One of the first demands of a theory for adsorption then, is that it give an experimentally correct adsorption isotherm. Later, it is shown that this test is insufficient and that a more sensitive test of the various models requires a consideration of how the energy and entropy of adsorption vary with the amount adsorbed. Nowadays, a further expectation is that the model not violate the molecular picture revealed by surface diffraction, microscopy, and spectroscopy data, see Chapter VIII and Section XVIII-2 Steele [8] discusses this picture with particular reference to physical adsorption. [Pg.603]

Because of their prevalence in physical adsorption studies on high-energy, powdered solids, type II isotherms are of considerable practical importance. Bmnauer, Emmett, and Teller (BET) [39] showed how to extent Langmuir s approach to multilayer adsorption, and their equation has come to be known as the BET equation. The derivation that follows is the traditional one, based on a detailed balancing of forward and reverse rates. [Pg.618]

It was noted in Section XVII-1 that chemisorption may become slow at low temperatures so that even though it is favored thermodynamically, the only process actually observed may be that of physical adsorption. Such slowness implies an activation energy for chemisorption, and the nature of this effect has been much discussed. [Pg.703]

If we knew the variation m A as a fiinction of coverage 0, this would be the equation for the isothenn. Typically the energy for physical adsorption in the first layer, -A E, when adsorption is predominantly tlnongh van der Waals interactions, is of the order of lO/rJ where T is the temperature and /rthe Boltzmann constant, so that, according to equation (B1.26.6), the first layer condenses at a pressure given by PIPq. 10... [Pg.1871]

In dealing with physical adsorption it is usually assumed that the adsorbent is inert, so that the loss or gain of energy is due solely to the change in state of the adsorptive brought about by the addition or removal of the adsorbate. This approach allows us to write... [Pg.13]

Adsorption of dispersants at the soHd—Hquid interface from solution is normally measured by changes in the concentration of the dispersant after adsorption has occurred, and plotted as an adsorption isotherm. A classification system of adsorption isotherms has been developed to identify the mechanisms that may be operating, such as monolayer vs multilayer adsorption, and chemisorption vs physical adsorption (8). For moderate to high mol wt polymeric dispersants, the low energy (equiUbrium) configurations of the adsorbed layer are typically about 3—30 nm thick. Normally, the adsorption is monolayer, since the thickness of the first layer significantly reduces attraction for a second layer, unless the polymer is very low mol wt or adsorbs by being nearly immiscible with the solvent. [Pg.148]

Heterogeneity Adsorbents and ion exchangers can be physically and chemically heterogeneous. Although exceptions exist, solutes generally compete for the same sites. Models for adsorbent heterogeneity have been developed for both discrete and continuous distributions of energies [Ross and Olivier, On Physical Adsorption, Interscience, New York, 1964 Jaroniec and Madey, Rudzinsld and Everett, gen. refs.]. [Pg.1504]

Among all the low energy interactions, London dispersion forces are considered as the main contributors to the physical adsorption mechanism. They are ubiquitous and their range of interaction is in the order 2 molecular diameters. For this reason, this mechanism is always operative and effective only in the topmost surface layers of a material. It is this low level of adhesion energy combined with the viscoelastic properties of the silicone matrix that has been exploited in silicone release coatings and in silicone molds used to release 3-dimensional objects. However, most adhesive applications require much higher energies of adhesion and other mechanisms need to be involved. [Pg.695]

Physical adsorption of oxygen resulting in the formation of one or more monolayers of oxide and requiring no activation energy. [Pg.23]

The influence of the Ni atoms becomes clear from a comparison of the actual reaction path, which consists of physical adsorption and subsequent dissociative chemisorption, with the theoretical alternative reaction path, consisting of dissociation of H2 followed by the formation of two Ni-H bonds. H2 is a very stable molecule and, as a consequence, the potential energy of the dissociated H-atoms is very high. In moving to the adsorbed state, Ni-... [Pg.62]

For an oxidized surface, the value of y is 10" - 1.7-10 and it decreases with increasing the experimental temperature. In this case the activation energy of a change in yis 2.1 kcal/mole. From these data it can be inferred that the heterogeneous de-excitation of singlet oxygen proceeds in terms of the physical adsorption mechanism similar to that described for glass. [Pg.310]

The adsorption action of activated carbon may be explained in terms of the surface tension (or energy per unit surface area) exhibited by the activated particles whose specific surface area is very large. The molecules on the surface of the particles are subjected to unbalanced forces due to unsatisfied bonds and this is responsible for the attachment of other molecules to the surface. The attractive forces are, however, relatively weak and short range, and are called Van der Waals forces, and the adsorption process under these conditions is termed as a physical adsorption (physisorption) process. In this case, the adsorbed molecules are readily desorbed from the surface. Adsorption resulting from chemical interaction with surface molecules is termed as chemisorption. In contrast to the physical process described for the adsorption on carbon, the chemisorption process is characterized by stronger forces and irreversibility. It may, however, be mentioned that many adsorption phenomena involve both physical and chemical processes. They are, therefore, not easily classified, and the general term, sorption, is used to designate the mechanism of the process. [Pg.507]

Conventional bulk measurements of adsorption are performed by determining the amount of gas adsorbed at equilibrium as a function of pressure, at a constant temperature [23-25], These bulk adsorption isotherms are commonly analyzed using a kinetic theory for multilayer adsorption developed in 1938 by Brunauer, Emmett and Teller (the BET Theory) [23]. BET adsorption isotherms are a common material science technique for surface area analysis of porous solids, and also permit calculation of adsorption energy and fractional surface coverage. While more advanced analysis methods, such as Density Functional Theory, have been developed in recent years, BET remains a mainstay of material science, and is the recommended method for the experimental measurement of pore surface area. This is largely due to the clear physical meaning of its principal assumptions, and its ability to handle the primary effects of adsorbate-adsorbate and adsorbate-substrate interactions. [Pg.305]

Adsorption is typically exothermic (i.e., releases energy in the process of bonding), but can be endothermic, and can be classified into two groups, based on the energies involved chemical adsorption and physical adsorption. Chemical adsorption is more significant for heavy metals, either in the form of ion exchange or interactions involving metal complexes. [Pg.795]

Adsorption is the preferential concentration of a species at the interface between two phases. Adsorption on solid surfaces is a very complex process and one that is not well understood. The surfaces of most heterogeneous catalysts are not uniform. Variations in energy, crystal structure, and chemical composition will occur as one moves about on the catalyst surface. In spite of this it is generally possible to divide all adsorption phenomena involving solid surfaces into two main classes physical adsorption and chemical adsorption (or chemisorption). Physical adsorption arises from intermolecular forces... [Pg.169]

For physical adsorption processes the third assumption is the poorest of these assumptions. For the case of chemical adsorption the worst of these assumptions is the second. There is a significant amount of experimental evidence that is contradictory to this assumption. Taylor (7) was the first to emphasize that adsorption sites may vary in energy. He noted that atoms at peaks on the surface and along crystal edges will be in high-energy states and will be the points at which adsorption first occurs. Other evidence for the lack of surface uniformity includes experimental data indicating that ... [Pg.174]

ACN vapor had the most pronounced permutation of the relatively rapid and relatively slow response and recovery kinetics. Such behavior could be due to the combination of physical and chemical adsorption. Physical adsorption effects are typically pronounced with rapid response and recovery kinetics because of the relatively low energies of physical interactions between vapors and the sensing surface. Chemical adsorption effects have much slower recovery kinetics because of the relatively high energies of chemical interactions between vapors and the sensing surface. The recovery from all tested vapors was reversible with the slowest recovery after the exposure to ACN on the order of several hours from the highest tested vapor concentration of 0.1 P/Po-... [Pg.87]


See other pages where Physical adsorption energy is mentioned: [Pg.430]    [Pg.40]    [Pg.82]    [Pg.430]    [Pg.40]    [Pg.82]    [Pg.572]    [Pg.591]    [Pg.601]    [Pg.703]    [Pg.272]    [Pg.516]    [Pg.1496]    [Pg.695]    [Pg.270]    [Pg.244]    [Pg.13]    [Pg.14]    [Pg.15]    [Pg.16]    [Pg.20]    [Pg.24]    [Pg.308]    [Pg.21]    [Pg.61]    [Pg.250]    [Pg.698]    [Pg.169]    [Pg.170]    [Pg.172]    [Pg.4]   
See also in sourсe #XX -- [ Pg.379 ]




SEARCH



Adsorption energy

Adsorptive energy

Physical adsorption

© 2024 chempedia.info