Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photocurrent determination

The rate of charge transfer at the PC-electrolyte interface and the rate of charge transfer at the substrate-PC interface are both photocurrent-determining processes. [Pg.206]

Kubo, W. Kambe, S. Nakade, S. Kitamura, T. Hanabusa, K Wada, Y. Yanagida, S. (2003). Photocurrent-determining processes in quasi-solid-state dye-sensitized solar cells using ionic gel electrolytes. Journal of Physical Chemistry B, 107, 2003, 4374-4381. [Pg.654]

The spectral dependence of the photoresponse of these bilayer heterojunction devices, illuminated from the 1TO side, is displayed in Figure 15-22. The onset of photocurrent at hv— 1.7 cV follows the absorption of the fullerene, indicating a symmetric hole transfer from the excited fullerene to the MEH-PPV. The minimum in the photocurrent at /iv=2.5 eV corresponds to the photon energy of maximum absorption of MEH-PPV. The MEH-PPV layer, therefore, acts as a filter, which reduces the number of photons reaching the MEH-PPV/C()0 interlace. Thus, the thickness of the MEH-PPV layer determines the anlibatic spectral be-... [Pg.595]

Stationary microwave electrochemical measurements can be performed like stationary photoelectrochemical measurements simultaneously with the dynamic plot of photocurrents as a function of the voltage. The reflected photoinduced microwave power is recorded. A simultaneous plot of both photocurrents and microwave conductivity makes sense because the technique allows, as we will see, the determination of interfacial rate constants, flatband potential measurements, and the determination of a variety of interfacial and solid-state parameters. The accuracy increases when the photocurrent and the microwave conductivity are simultaneously determined for the same system. As in ordinary photoelectrochemistry, many parameters (light intensity, concentration of redox systems, temperature, the rotation speed of an electrode, or the pretreatment of an electrode) may be changed to obtain additional information. [Pg.447]

These three equations (11), (12), and (13) contain three unknown variables, ApJt kn and sr The rest are known quantities, provided the potential-dependent photocurrent (/ph) and the potential-dependent photoinduced microwave conductivity are measured simultaneously. The problem, which these equations describe, is therefore fully determined. This means that the interfacial rate constants kr and sr are accessible to combined photocurrent-photoinduced microwave conductivity measurements. The precondition, however is that an analytical function for the potential-dependent microwave conductivity (12) can be found. This is a challenge since the mathematical solution of the differential equations dominating charge carrier behavior in semiconductor interfaces is quite complex, but it could be obtained,9 17 as will be outlined below. In this way an important expectation with respect to microwave (photo)electro-chemistry, obtaining more insight into photoelectrochemical processes... [Pg.459]

The interfacial charge-transfer rate constant can be determined when the PMC signal and the photocurrent are measured simultaneously. When the interfacial charge transfer is, on the other hand, very large and Aps negligible, the PMC value becomes... [Pg.464]

As mentioned in the introduction, before an adequate theory was developed, it was difficult to understand the experimentally determined pho-toinduced PMC signals, especially the minority carrier accumulation near the onset of photocurrents.The reason was that neither conventional solid-state semiconductor theory nor photoelectrochemical theory had taken such a phenomenon into account. But we have shown that it is real and microwave (photo)electrochemical experiments clearly confirm it. [Pg.469]

As outlined at the beginning of this chapter, combined photocurrent and microwave conductivity measurements supply the information needed to determine three relevant potential-dependent quantities the surface concentration of excess minority carriers (Aps), the interfacial recombination rate (sr), and the interfacial charge-transfer rate ( r). By inserting the... [Pg.485]

The fact that a potential-dependent lifetime peak for PMC transients has been found which coincides with the stationary PMC peak in the depletion region near the onset of photocurrents (Fig. 22) is very relevant since the stationary PMC peak is determined by the interfacial rate constants of charge carriers (Figs. 13 and 14) this should also be the case for the transient PMC peak. To demonstrate this correlation, the following formalism can be developed10 ... [Pg.494]

Since the potential-dependent photocurrent and the potential-dependent PMC signal were measured and potential-dependent interfacial rate constant kr can be determined. It turns out that it increases exponentially with the electrode potential applied... [Pg.510]

Lemasson P, Boutry AE, Tiiboulet R (1984) The semiconductor-electrolyte junction Physical parameters determination by photocurrent measurement throughout the Cdi xZnxTe alloy series. J Appl Phys 55 592-594... [Pg.298]

Frequently it has been observed with n-type as well as with p-type electrodes in aqueous solutions that the onset potential of the pure photocurrent differs considerably from the flatband potential. The latter can be determined by capacity measurements in the dark as illustrated by the dashed line in the ij — Ub curve in Fig. 8 a. This effect is usually explained by recombination and trapping of minority carriers created by light excitation at the surface. It is obvious that these effects have a negative effect... [Pg.95]

An a-Si H-based position sensor consists of an intrinsic film sandwiched between two transparent conductive electrodes [637]. Two line contacts on the top are perpendicular to two on the bottom. When a light spot is incident on the device, carriers are generated, and a photocurrent flows to the contacts. The contacts form resistive dividers, so that from the ratio of the photocurrents the lateral position relative to the top or bottom contacts can be determined. The top contacts give the x-position, and the bottom contacts the y-position. [Pg.181]

Under potentiostatic conditions, the photocurrent dynamics is not only determined by faradaic elements, but also by double layer relaxation. A simplified equivalent circuit for the liquid-liquid junction under illumination at a constant DC potential is shown in Fig. 18. The difference between this case and the one shown in Fig. 7 arises from the type of perturbation introduced to the interface. For impedance measurements, a modulated potential is superimposed on the DC polarization, which induces periodic responses in connection with the ET reaction as well as transfer of the supporting electrolyte. In principle, periodic light intensity perturbations at constant potential do not affect the transfer behavior of the supporting electrolyte, therefore this element does not contribute to the frequency-dependent photocurrent. As further clarified later, the photoinduced ET... [Pg.220]

The overall conversion efficiency (rj) of the dye-sensitized solar cell is determined by the photocurrent density (7ph) measured at short circuit, Voc, the fill factor (fif) of the cell, and the intensity of the incident light (7S) as shown in Equation (9). [Pg.724]

For aLsc 1 the exponential can be expanded, and the flat-band potential can be determined by plotting the square of the photocurrent versus the potential ... [Pg.103]

Figure 8.9 Determination of the fiat-band potential from the photocurrent (data taken from Ref. 6). Figure 8.9 Determination of the fiat-band potential from the photocurrent (data taken from Ref. 6).
The HOMO-LUMO gap of the photosensitiser determines the current produced on irradiation. The smaller the size of this gap, the larger the photocurrent, due to the ability of the dye to absorb longer-wavelength regions of the solar spectrum. [Pg.203]

The basic idea of most diffusion length measurement techniques is to generate a certain number of minority carriers inside the bulk Si, for example by illumination, and to measure the fraction of these carriers that diffuse to a collecting interface. This fraction can be determined capacitively [Bo6], as well as by measurements of the steady-state photocurrent [Dr2, Lei 1], The parameter obtained by these measurements is the minority carrier diffusion length ID of electrons in... [Pg.211]

Typical photocurrent transients are shown in Fig. 6 for electrons and in Fig. 7 for holes. The shape of these curves is representative for all transients observed in the study and is characteristic of dispersive transport [64-68]. The carrier mobility p was determined from the inflection point in the double logarithmic plots (cf. Fig. 6b and Fig. 7b) [74]. TOF measurements were performed as a function of carrier type, applied field, and film thickness (Fig. 8). As can be seen from Fig. 8, the drift mobility is independent of L, demonstrating that the photocurrents are not range-limited but indeed reflect the drift of the carrier sheet across the entire sample. Both the independence of the mobility from L, and the fact that the slopes of the tangents used to determine the mobility (Fig. 6 and Fig. 7) do not add to -2 as predicted by the Scher-Montroll theory, indicate that the Scher-Montroll picture of dispersive transients does not adequately describe the transport in amorphous EHO-OPPE [69]. The dispersive nature of the transient is due to the high degree of disorder in the sample and its impact on car-... [Pg.221]

As expected, the coordination of Pt markedly influences the photophysical characteristics of the PPE. The photoluminescence is efficiently quenched, and the absorption maximum in the visible regime experiences a hypsochromic shift. The charge-carrier mobility of different EHO-OPPE-Pt samples was determined by TOE measurements as described above for the neat EHO-OPPE. The shape of the photocurrent transients of all EHO-OPPE-Pt samples was similar to those shown in Figs. 6 and 7 for the neat EHO-OPPE. This indicates that these organometallic conjugated polymers networks are also characterized... [Pg.228]

The flat band potentials of a semiconductor can be determined from the photocurrent-potential relationship for small band bending [equation (4.2.1)], or derived from the intercept of Mott-Schottky plot [equation (4.2.2)] using following equations... [Pg.194]


See other pages where Photocurrent determination is mentioned: [Pg.45]    [Pg.572]    [Pg.45]    [Pg.572]    [Pg.141]    [Pg.138]    [Pg.183]    [Pg.183]    [Pg.458]    [Pg.475]    [Pg.483]    [Pg.487]    [Pg.510]    [Pg.520]    [Pg.226]    [Pg.256]    [Pg.262]    [Pg.262]    [Pg.266]    [Pg.281]    [Pg.287]    [Pg.91]    [Pg.105]    [Pg.358]    [Pg.91]    [Pg.210]    [Pg.278]    [Pg.379]    [Pg.192]    [Pg.220]    [Pg.205]   
See also in sourсe #XX -- [ Pg.365 ]




SEARCH



Photocurrent

Photocurrents

© 2024 chempedia.info