Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photochemical reactions complexes

The chemical uses of tungsten have increased substantially in more recent years. Catalysis (qv) of photochemical reactions and newer types of soluble organometaUic complexes for industrially important organic reactions are among the areas of these new applications. [Pg.287]

Photochemical Reactions. The photochemistry of chlorine dioxide is complex and has been extensively studied (29—32). In the gas phase, the primary photochemical reaction is the homolytic fission of the chlorine—oxygen bond to form CIO and O. These products then generate secondary products such as chlorine peroxide, ClOO, chlorine, CI2, oxygen, O2, chlorine trioxide [17496-59-2] CI2O2, chlorine hexoxide [12442-63-6] and... [Pg.482]

Benzodiazepines as antianxiety agents, 1, 170 as anticonvulsants, 1, 166 organometallic complexes, 7, 604 as sedatives, 1, 166 IH- 1,2-Benzodiazepines conversion to 3H-1,2-benzodiazepines, 7, 604 synthesis, 7, 597, 598, 604 3H-1,2-Benzodiazepines acid-catalyzed reactions, 7, 601 nucleophilic reactions, 7, 604 oxidation, 7, 603 synthesis, 7, 596 thermal reactions, 7, 600 5H-1,2-Benzodiazepines photochemical reactions, 7, 599 synthesis, 7, 603... [Pg.544]

Paal-Knorr synthesis, 4, 118, 329 Pariser-Parr-Pople approach, 4, 157 PE spectroscopy, 4, 24, 188-189 photoaddition reactions with aliphatic aldehydes and ketones, 4, 232 photochemical reactions, 4, 67, 201-205 with aliphatic carbonyl compounds, 4, 268 with dimethyl acetylenedicarboxylate, 4, 268 Piloty synthesis, 4, 345 Piloty-Robinson synthesis, 4, 110-111 polymers, 273-274, 295, 301, 302 applications, 4, 376 polymethylation, 4, 224 N-protected, 4, 238 palladation, 4, 83 protonation, 4, 46, 47, 206 pyridazine synthesis from, 3, 52 pyridine complexes NMR, 4, 165... [Pg.819]

TBT exists in solution as a large univalent cation and forms a neutral complex with CH or OH . It is extremely surface active and so is readily adsorbed onto suspended particulate material. Such adsorption and deposition to the sediments limits its lifetime in the water column. Degradation, via photochemical reactions... [Pg.87]

UV irradiation. Indeed, thermal reaction of 1-phenyl-3,4-dimethylphosphole with (C5HloNH)Mo(CO)4 leads to 155 (M = Mo) and not to 154 (M = Mo, R = Ph). Complex 155 (M = Mo) converts into 154 (M = Mo, R = Ph) under UV irradiation. This route was confirmed by a photochemical reaction between 3,4-dimethyl-l-phenylphosphole and Mo(CO)6 when both 146 (M = Mo, R = Ph, R = R = H, R = R" = Me) and 155 (M = Mo) resulted (89IC4536). In excess phosphole, the product was 156. A similar chromium complex is known [82JCS(CC)667]. Complex 146 (M = Mo, R = Ph, r2 = R = H, R = R = Me) enters [4 -H 2] Diels-Alder cycloaddition with diphenylvinylphosphine to give 157. However, from the viewpoint of Woodward-Hoffmann rules and on the basis of the study of UV irradiation of 1,2,5-trimethylphosphole, it is highly probable that [2 - - 2] dimers are the initial products of dimerization, and [4 - - 2] dimers are the final results of thermally allowed intramolecular rearrangement of [2 - - 2] dimers. This hypothesis was confirmed by the data obtained from the reaction of 1-phenylphosphole with molybdenum hexacarbonyl under UV irradiation the head-to-tail structure of the complex 158. [Pg.144]

Allylic bromination of pregnenolone acetate with dibromodi-methylhydantoin affords the 7-bromo compound (155) of undefined stereochemistry. Dehydrobromination by means of collidine followed by saponification affords the 5,7 endocyclic cis,cis-diene, 156. This compound contains the same chromophore as ergosterol, a steroid used as a vitamin D precursor. The latter displays a complex series of photochemical reactions among the known products is lumisterol, in which the stereochemistry at both C9 and Cio is inverted. Indeed, irradiation of 156 proceeds to give just such a product (158). This reaction can be rationalized by... [Pg.184]

We have also used poly(propynoic acid) in our studies of the photochemical interaction of PCSs with dienophiles, such as maleic anhydride, tetracyanoethylene, and styrene. This photochemical reaction of Diels-Alder type is accompanied by the breakdown of the conjugation system and the formation of slightly colored adducts266. Together with the cycloaddition reaction, photodegradation of PPA and its adducts takes place. A cycloaddition reaction is always preceded by the formation of a donor-acceptor complex of a PCS with a dienophile. [Pg.31]

Merlic et al. were the first to predict that exposing a dienylcarbene complex 126 to photolysis would lead to an ort/zo-substituted phenolic product 129 [74a]. This photochemical benzannulation reaction, which provides products complementary to the classical para-substituted phenol as benzannulation product, can be applied to (alkoxy- and aminocarbene)pentacarbonyl complexes [74]. A mechanism proposed for this photochemical reaction is shown in Scheme 54. Photo activation promotes CO insertion resulting in the chromium ketene in-... [Pg.150]

Merlic developed a new variation of the thermally induced benzannulation reaction. The dienylcarbene complex 132 was reacted with isonitrile to give an orf/zo-alkoxyaniline derivative 135 [76] (Scheme 56). This annulation product is regiocomplementary to those reported from photochemical reaction of chromium dienyl(amino)carbene complexes. The metathesis of the isocyanide with the dienylcarbene complex 132 generates a chromium-complexed di-enylketenimine intermediate 133 which undergoes electrocyclisation. Final tau-tomerisation and demetalation afford the orf/zo-alkoxyaniline 135. [Pg.151]

Keywords Metal carbenes Photochemical reactions Metal-ketene complexes... [Pg.157]

In attempts to understand the photochemical reactions of Fischer carbene complexes, several matrix isolation and flash photolysis studies have been conducted using both Cr and W (but not Mo) complexes [5-11]. Although the complexes studied and conditions used varied, several general conclusions were drawn ... [Pg.158]

Only the obvious studies of aqueous plutonium photochemistry have been completed, and the results are summarized below. The course of discussion will follow the particular photochemical reactions that have been observed, beginning with the higher oxidation states. This discussion will consider primarily those studies of aqueous plutonium In perchloric acid media but will include one reaction in nitric acid media. Aqueous systems other than perchlorate may affect particular plutonium states by redox reactions and complex formation and could obscure photochemical changes. Detailed experimental studies of plutonium photochemistry in other aqueous systems should also be conducted. [Pg.265]

Nitrogen dioxide in the atmosphere undergoes the same reaction and contributes to the formation of acid rain. It also initiates a complex sequence of smog-forming photochemical reactions. [Pg.749]

In order to estimate the extent of ozone depletion caused by a given release of CFCs, computer models of the atmosphere are employed. These models incorporate information on atmospheric motions and on the rates of over a hundred chemical and photochemical reactions. The results of measurements of the various trace species in the atmosphere are then used to test the models. Because of the complexity of atmospheric transport, the calculations were carried out initially with one-dimensional models, averaging the motions and the concentrations of chemical species over latitude and longitude, leaving only their dependency on altitude and time. More recently, two-dimensional models have been developed, in which the averaging is over longitude only. [Pg.27]

Transition-metal catalyzed photochemical reactions for hydrogen generation from water have recently been investigated in detail. The reaction system is composed of three major components such as a photosensitizer (PS), a water reduction catalyst (WRC), and a sacrificial reagent (SR). Although noble-metal complexes as WRC have been used [214—230], examples for iron complexes are quite rare. It is well known that a hydride as well as a dihydrogen (or dihydride) complex plays important roles in this reaction. [Pg.72]

Alkene-metal complexes are usually prepared by a process by which some other ligand is dissociated from the metal. Both thermal and photochemical reactions are used. [Pg.767]


See other pages where Photochemical reactions complexes is mentioned: [Pg.295]    [Pg.295]    [Pg.2954]    [Pg.390]    [Pg.149]    [Pg.147]    [Pg.526]    [Pg.596]    [Pg.37]    [Pg.25]    [Pg.732]    [Pg.16]    [Pg.282]    [Pg.195]    [Pg.880]    [Pg.62]    [Pg.135]    [Pg.158]    [Pg.168]    [Pg.273]    [Pg.258]    [Pg.921]    [Pg.185]    [Pg.333]    [Pg.401]    [Pg.129]    [Pg.6]    [Pg.18]    [Pg.4]    [Pg.275]    [Pg.880]   
See also in sourсe #XX -- [ Pg.78 ]




SEARCH



Fischer carbene complex photochemical reaction

Photochemical complex

Photochemical reactions nickel complexes

Photochemical reactions transition metal complexes

Photochemical substitution reactions transition metal complexes

Ruthenium complexes, reactions photochemical activation

Transition-metal complexes, mechanisms photochemical reactions

© 2024 chempedia.info