Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosphorylation effect

Two equivalents of the tertiary amine base are required, and a significant improvement in the diastereoselectivity was observed with TMEDA over DIPEA. Purification and further enrichment of the desired RRR isomer to >98% ee was achieved by crystallization. Oxidative removal of the chiral auxiliary followed by carbodiimide mediated amide formation provides (3-keto carboxamide 14 in good yield. Activation of the benzylic hydroxyl via PPha/DEAD, acylation, or phosphorylation, effects 2-azetidinone ring-closure with inversion of stereochemistry at the C4 position. Unfortunately, final purification could not be effected by crystallization and the side products and or residual reagents could only be removed by careful chromatography on silica. [Pg.190]

Ginsburg, A. Szczepanowski, R.H. Ruvinov, S.B. Nosworthy, N.J. Sondej, M. Umland, T.C. Peterkofsky, A. Conformational stability changes of the amino terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate sugar phosphotransferase system produced by substituting alanine or glutamate for the active-site histidine 189 implications for phosphorylation effects. Protein Sci., 9, 1085-1094 (2000)... [Pg.422]

I now propose a third possibility. I suggest that phosphorylation itself has a negligible direct effect on the electrical interactions of neighbouring membrane proteins, and that it is the sum of individually weak inter-molecular forces that is disrupted by phosphorylation at an allosteric site. I therefore suggest that the direct effect of phosphorylation is on intra-molecular forces in the hydrophilic domain of membrane proteins. The electrical effects of altered cation concentration may thus have served as a rather misleading model for phosphorylation effects. [Pg.1870]

Various inorganic, organic, and organometaUic compounds are known to cataly2e this polymerization (4,8,9). Among these, BCl is a very effective catalyst, although proprietary catalysts that signiftcandy lower polymerization temperature from the usual, sealed-tube reaction at 250°C are involved in the industrial manufacture of the polymer. A polycondensation process has also been developed for the synthesis of (4) (10—12). This involves elimination of phosphoryl chloride from a monomer prepared from (NH 2 04 and PCl. ... [Pg.257]

It is estimated that mote than 25 x 10 different potentially toxic OP esters can be made using Schrader s classic (27) formula for effective phosphorylating agents, (39), where R and are short-chain alkyl, alkoxy, alkylthio, or alkylamino groups, and X is a displaceable moiety with a high energy P-bond such as E or acyl anhydride, and the pentavalent phosphoms atom is bonded to oxygen or sulfur. [Pg.279]

The alkyl and alkoxy substituents of phosphate or phosphonate esters also affect the phosphorylating abiUty of the compound through steric and inductive effects. A satisfactory correlation has been developed between the quantitative measure of these effects, Tafts s O, and anticholinesterase activity as well as toxicity (33). Thus long-chain and highly branched alkyl and alkoxy groups attached to phosphoms promote high stabiUty and low biological activity. [Pg.290]

The modes of action for niclosamide are interference with respiration and blockade of glucose uptake. It uncouples oxidative phosphorylation in both mammalian and taenioid mitochondria (22,23), inhibiting the anaerobic incorporation of inorganic phosphate into adenosine triphosphate (ATP). Tapeworms are very sensitive to niclosamide because they depend on the anaerobic metaboHsm of carbohydrates as their major source of energy. Niclosamide has selective toxicity for the parasites as compared with the host because Httle niclosamide is absorbed from the gastrointestinal tract. Adverse effects are uncommon, except for occasional gastrointestinal upset. [Pg.244]

With the aid of cytosine permease, flucytosine reaches the fungal cell where it is converted by cytosine deaminase into 5-fluorouracil [51-21-8]. Cytosine deaminase is not present in the host, which explains the low toxicity of 5-FC. 5-Fluorouracil is then phosphorylated and incorporated into RNA and may also be converted into 5-fluorodeoxyuridine monophosphate, which is a potent and specific inhibitor of thymidylate synthetase. As a result, no more thymidine nucleotides are formed, which in turn leads to a disturbance of the DNA-synthesis. These effects produce an inhibition of the protein synthesis and cell repHcation (1,23,24). 5-Fluorouracil caimot be used as an antimycotic. It is poorly absorbed by the fungus to begin with and is also toxic for mammalian cells. [Pg.256]

Amino-5-iodo-2, 5 -dideoxyuridine [56045-73-9] (13) C2H22IN2O4, was synthesized ia 1975 (27) and was found effective against herpes keratitis ia rabbits (28). This compound is markedly less cytotoxic than IdU, iadicating that it may have a safer and more specific mode of antiviral activity. A potential limitation of this group of nucleosides is their specificity, for they fail to inhibit all strains of herpes vimses. The specific antiviral activity of (13) is considered to be a result of the incorporation of the 5 -Ai-phosphate into both viral and host DNA in infected cells, but not into the DNA of normal cells. Phosphorylation of (13) occurs only in herpes vims-infected cells, brought about by a vims-induced thymidine kinase (29). [Pg.305]

Ara-A is phosphorylated in mammalian cells to ara-AMP by adenosine kinase and deoxycytidine kinase. Further phosphorylation to the di- and triphosphates, ara-ADP and ara-ATP, also occurs. In HSV-1 infected cells, ara-A also is converted to ara-ATP. Levels of ara-ATP correlate directly with HSV rephcation. It has recently been suggested that ara-A also may exhibit an antiviral effect against adenovims by inhibiting polyadenylation of viral messenger RNA (mRNA), which may then inhibit the proper transport of the viral mRNA from the cell nucleus. [Pg.307]

The antiviral mechanism of action of acyclovir has been reviewed (72). Acyclovir is converted to the monophosphate in herpes vims-infected cells (but only to a limited extent in uninfected cells) by viral-induced thymidine kinase. It is then further phosphorylated by host cell guanosine monophosphate (GMP) kinase to acyclovir diphosphate [66341 -17-1], which in turn is phosphorylated to the triphosphate by unidentified cellular en2ymes. Acyclovir triphosphate [66341 -18-2] inhibits HSV-1 viral DNA polymerase but not cellular DNA polymerase. As a result, acyclovir is 300 to 3000 times more toxic to herpes vimses in an HSV-infected cell than to the cell itself. Studies have shown that a once-daily dose of acyclovir is effective in prevention of recurrent HSV-2 genital herpes (1). HCMV, on the other hand, is relatively uninhibited by acyclovir. [Pg.308]


See other pages where Phosphorylation effect is mentioned: [Pg.804]    [Pg.804]    [Pg.575]    [Pg.141]    [Pg.574]    [Pg.72]    [Pg.770]    [Pg.606]    [Pg.464]    [Pg.804]    [Pg.804]    [Pg.575]    [Pg.141]    [Pg.574]    [Pg.72]    [Pg.770]    [Pg.606]    [Pg.464]    [Pg.191]    [Pg.475]    [Pg.441]    [Pg.45]    [Pg.220]    [Pg.275]    [Pg.288]    [Pg.19]    [Pg.438]    [Pg.241]    [Pg.488]    [Pg.68]    [Pg.118]    [Pg.122]    [Pg.123]    [Pg.306]    [Pg.124]    [Pg.139]    [Pg.265]   


SEARCH



© 2024 chempedia.info