Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosphorous trifluoride, preparation

Nakagome and co-workers effected the successful cyclization of N-ethyl-N-arylaminomethylenemalonates (749) in poly phosphoric acid, prepared from orthophosphoric acid and phosphorus pentoxide in polyphosphate ester (PPE), prepared from phosphorus pentoxide and anhydrous diethyl ether in chloroform in phosphoryl chloride on the action of boron trifluoride etherate on the action of acetic anhydride and concentrated sulfuric acid or on the action of phosphorus pentoxide in benzene [71GEP2033971, 71JHC357 76JAP(K) 18440]. Depending on the work-up process, l-ethyl-4-oxoquinoline-3-carboxylates (750, R1 = Et), l-ethyl-4-oxoquinoline-3-carboxylic acids (750, R2 = H) and 3-ethoxycarbonyl-4-chloroquinolinium iodides (751) were obtained. Only the cyclization of... [Pg.173]

Isopropylnaphthalenes can be prepared readily by the catalytic alkylation of naphthalene with propjiene. 2-lsopropylnaphthalene [2027-17-0] is an important intermediate used in the manufacture of 2-naphthol (see Naphthalenederivatives). The alkylation of naphthalene with propjiene, preferably in an inert solvent at 40—100°C with an aluminum chloride, hydrogen fluoride, or boron trifluoride—phosphoric acid catalyst, gives 90—95% wt % 2-isopropylnaphthalene however, a considerable amount of polyalkylate also is produced. Preferably, the propylation of naphthalene is carried out in the vapor phase in a continuous manner, over a phosphoric acid on kieselguhr catalyst under pressure at ca 220—250°C. The alkylate, which is low in di- and polyisopropylnaphthalenes, then is isomerized by recycling over the same catalyst at 240°C or by using aluminum chloride catalyst at 80°C. After distillation, a product containing >90 wt % 2-isopropylnaphthalene is obtained (47). [Pg.487]

Alkyl tertiary alkyl ethers can be prepared by the addition of an alcohol or phenol to a tertiary olefin under acid catalysis (Reycler reaction) sulfuric acid, phosphoric acid, hydrochloric acid, and boron trifluoride have all been used as catalysts ... [Pg.426]

Alkylation of furan and thiophene has been effected with alkenes and catalysts such as phosphoric acid and boron trifluoride. In general, Friedel-Crafts alkylation of furans or thiophenes is not preparatively useful, partly because of polymerization by the catalyst and partly because of polyalkylation. [Pg.53]

The concept that acetic acid can be prepared by carbonylation originated in use of routine acids. Carbonylation of methanol was first practiced in a high temperature and pressure process using boron trifluoride or phosphoric acid. A carbon monoxide pressure of 10,000 psi at 300 C was needed for the reaction (10). Metal salts came to replace acids as carbonylation catalysts. Carbonylation of methanol using a metal carbonyl catalyst was first discovered by Reppe and practised later by BASF. However, the process again required high pressure, 7500-10,000 psi, and the selectivity was low (11-14). [Pg.62]

Several catalysts have been recommended for the N-acetylation of carbazole with acetic anhydride boron trifluoride, phosphorus pentoxide, concentrated sulfuric acid, zinc chloride, and phosphoric acid all gave 9-acetylcarbazole in moderate to good yield. 9-Acetylcarbazole can also be prepared using the Vilsmeier complex of N,N-dimethylacetamide and phosgene. ... [Pg.106]

The chemistry of alkyl and alkenyl azides has been well summarized in several recent reviews.233-237 The azides can be prepared via numerous methods, of which the addition of hydrazoic acid to C—C multiple bonds is one. With the exception of cyclopropenes,238 most alkenes are unreactive towards hydrazoic acid itself. However, the addition can be catalyzed by acids (phosphoric acid,239 sulfuric acid260 or trifluoroacetic acid261) or Lewis acids (aluminum trichloride, boron trifluoride or titanium tetrachloride).262... [Pg.295]

Effective catalysts for preparing the polyformals were p-toluenesulfonic acid, camphorsulfonic acid, methanedisulfonic acid, and perchloric acid. Various other acidic compounds were evaluated as catalysts with tetramethylcyclobutanediol. In these experiments, 0.5 to 1.0 gram of acidic compound per mole of tetramethylcyclobutanediol was normally added. If insufficient water was obtained, more catalyst was added. If the prepolymer was obtained but an appreciable amount of brown color was present, less catalyst was then used. Compounds which did not catalyze the reaction (no water obtained) were phosphoric acid, zinc chloride, trifluoroacetic acid, and heptafluorobutyric acid. Incomplete reactions (insufficient water) took place with concentrated hydrochloric acid, concentrated nitric acid, zinc fluoroborate, or Amberlite IRC-50 ion exchange resin as catalyst. A prepolymer was obtained when boron trifluoride etherate was used, but buildup did not take place in the solid phase (catalyst probably too volatile). Brown or speckled-brown polymers (after solid-phase buildup) were obtained with catalysts containing sulfonic acid groups (benzenesulfonic, dodecylbenzenesulfonic, sulfo-acetic, methanetrisulfonic, sulfuric, p-toluenesulfonic, camphorsulfonic, and methanedisulfonic acids). To obtain white polymers from tetramethylcyclobutanediol it was necessary to treat the solvent and prepolymer reaction mixture as previously described. (White polyformals were obtained from the other diols without this treatment.)... [Pg.206]

Acetylthiophen can also be prepared from thiophen and acetic anhydride with boron trifluoride (70% yield),32a 516 85% phosphoric acid,554 concentrated phosphoric acid,525 or sulfuric acid.555... [Pg.939]

Cymene can be obtained from toluene and isopropyl alcohol in the presence of phosphoric acid, the yield then being 80%.658 The use of boron trifluoride and phosphoric oxide is illustrated in the following preparation of 5ec-butyl-benzene 655... [Pg.950]


See other pages where Phosphorous trifluoride, preparation is mentioned: [Pg.403]    [Pg.441]    [Pg.403]    [Pg.441]    [Pg.224]    [Pg.806]    [Pg.432]    [Pg.607]    [Pg.851]    [Pg.994]    [Pg.994]    [Pg.996]    [Pg.997]    [Pg.1042]    [Pg.607]    [Pg.506]    [Pg.245]    [Pg.577]    [Pg.995]    [Pg.387]    [Pg.1235]    [Pg.1236]   
See also in sourсe #XX -- [ Pg.28 , Pg.310 ]




SEARCH



Phosphorous trifluoride

© 2024 chempedia.info