Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosphoric acid condensed acids

The condensation of cyclohexanol or cyclohexene is generally carried out in the presence of phosphoric acid, pyrophosphoric acid, or HY 2eohtes the aromatization of intermediate cyclohexyUiydroquinone [4197-75-5] (19) is realized in the presence of a dehydrogenation catalyst. [Pg.491]

Molecules of DNA and RNA are polynucleotides, polymeric species built from nucleotide units. Polymerization takes place when the phosphate group of one nucleotide (which is the conjugate base of an organic phosphoric acid) condenses... [Pg.895]

FIGURE 21-23 Head-group attachment. The phospholipid head group is attached to a diacylglycerol by a phosphodiester bond, formed when phosphoric acid condenses with two alcohols, eliminating two molecules of H20. [Pg.809]

Condensation of the pyrrolidine enamine of cyclohexanone with l,l-dicyano-2,2-dimethylcyclopropane proceeds smoothly in refluxing dry xylene and gives the expected adduct in 76% yield. Recrystallisation of the adduct from 95% ethanol, however, gave a 91% yield of a product which no longer contained the pyrrolidine group but whose spectral data clearly showed the presence of a ketone group and an enaminonitrile function. Hydrolysis of this latter product with phosphoric acid/acetic acid gave 5-(2-oxo-4,4-dimethylcyclopentyl)pentanoic acid in 83% yield. [Pg.104]

The Condensed Phosphoric Acids. Phosphoric acid easily undergoes the process of condensation. Condensation is the reaction of two or more molecules to form larger molecules, either without any other products (in which case the condensation is also called polymerization), or with the elimination of small molecules, such as water. Condensation of two phosphoric acid molecules occurs by the reaction of two... [Pg.451]

Two examples of condensed phosphoricfV) acids are heptaoxo-diphosphoric(V) (pyrophosphoric) and polytrioxophosphoric (meta-phosphoric) acids. [Pg.247]

The crude acetonitrile contains as impurity chiefly acetic acid, arising from the action of phosphoric acid on the acetamide. Therefore add to the nitrile about half its volume of water, and then add powdered dry potassium carbonate until the well-shaken mixture is saturated. The potassium carbonate neutralises any acetic acid present, and at the same time salts out the otherwise water-soluble nitrile as a separate upper layer. Allow to stand for 20 minutes with further occasional shaking. Now decant the mixed liquids into a separating-funnel, run off the lower carbonate layer as completely as possible, and then pour off the acetonitrile into a 25 ml, distilling-flask into which about 3-4 g. of phosphorus pentoxide have been placed immediately before. Fit a thermometer and water-condenser to the flask and distil the acetonitrile slowly, collecting the fraction of b.p. 79-82°. Yield 9 5 g. (12 ml.). [Pg.122]

In the three-step process acetone first undergoes a Uquid-phase alkah-cataly2ed condensation to form diacetone alcohol. Many alkaU metal oxides, metal hydroxides (eg, sodium, barium, potassium, magnesium, and lanthanium), and anion-exchange resins are described in the Uterature as suitable catalysts. The selectivity to diacetone alcohol is typicaUy 90—95 wt % (64). In the second step diacetone alcohol is dehydrated to mesityl oxide over an acid catalyst such as phosphoric or sulfuric acid. The reaction takes place at 95—130°C and selectivity to mesityl oxide is 80—85 wt % (64). A one-step conversion of acetone to mesityl oxide is also possible. [Pg.490]

At equihbrium, the specific composition of a concentrated phosphoric acid is a function of its P2 s content. Phosphoric acid solutions up to a concentration equivalent of about 94% H PO (68% P2O5) contain H PO as the only phosphoric acid species present. At higher concentrations, the orthophosphoric acid undergoes condensation (polymerization by dehydration) to yield a mixture of phosphoric acid species (Table 5), often referred to genericaHy as polyphosphoric or superphosphoric acid, H20/P20 = - 3, or ultraphosphoric acid, H20/P20 = - 1. At the theoretical P2O5 concentration for orthophosphoric acid of 72.4%, the solution is actually a mixture containing 13% pyrophosphoric acid and about 1% free water. Because the pyrophosphoric acid present is the result of an equihbrium state dependent on the P2 5 content of the solution, pure orthophosphoric acid can be obtained because of a shift in equihbrium back to H PO upon crystallization. [Pg.328]

The only clearly defined crystalline compositions are three forms of phosphoric acid and hemihydrate, pyrophosphoric acid, and crystalline P O q. The phosphoric acids obtained in highly concentrated solutions or by mixing phosphoric acid with phosphoms pentoxide are members of a continuous series of amorphous (excluding [Y OO]) condensed phosphoric acid mixtures. Mixtures having more than 86% P2O5 contain some cyclic metaphosphoric... [Pg.329]

The condensed phosphoric acids are hygroscopic and exhibit a variety of physical forms at room temperature. The material appears oily at 72—82 wt % P20 viscous and gummy at 82—90 wt % P2O5 and is a mixture of glassy and crystalline material at 90 wt %. [Pg.329]

Commercial condensed phosphoric acids are mixtures of linear polyphosphoric acids made by the thermal process either direcdy or as a by-product of heat recovery. Wet-process acid may also be concentrated to - 70% P2O5 by evaporation. Liaear phosphoric acids are strongly hygroscopic and undergo viscosity changes and hydrolysis to less complex forms when exposed to moist air. Upon dissolution ia excess water, hydrolytic degradation to phosphoric acid occurs the hydrolysis rate is highly temperature-dependent. At 25°C, the half-life for the formation of phosphoric acid from the condensed forms is several days, whereas at 100°C the half-life is a matter of minutes. [Pg.330]

Pyrophosphoric (diphosphoric) acid, H4P2O2, is the only condensed phosphoric acid definitely obtainable ia crystalline form. It has a theoretical P2O5 content of 79.8%. However, Hquid polyphosphoric acid of such content shows by analysis only 42.5% the remainder is phosphoric acid and... [Pg.330]

Condensed Phosphoric Acid. The largest use of polyphosphoric (superphosphoric) acid is as an intermediate in the production of high quahty Hquid fertilizers. The TVA pioneered the development of electric-furnace superphosphoric acid for this appHcation. However, wet-process superphosphoric acid prepared by evaporation of water from wet-process phosphoric acid has almost completely replaced furnace-grade acid in fertilizer manufacture. [Pg.330]

The general manufacturing scheme for phosphate salts is shown in Figure 11. Condensed phosphates are prepared from the appropriate orthophosphate or mixture of orthophosphates, so the preparation of orthophosphates must be considered first for the manufacture of any phosphate salt. Phosphoric acid is neutralized to form a solution or slurry with a carefully adjusted acid/base ratio according to the desired orthophosphate product. The orthophosphate may be recovered either by crystallization from solution, or the entire solution or slurry may be evaporated to dryness. The dewatering (qv) method is determined by the solubihty properties of the product and by its desired physical properties such as crystal size and shape, bulk density, and surface area. Acid orthophosphate salts may be converted to condensed phosphates by thermal dehydration (calcination). [Pg.340]

The dimer of phosphonic acid, diphosphonic acid [36465-90-4] (pyrophosphoms acid), H4P2O3, is formed by the reaction of phosphoms trichloride and phosphonic acid in the ratio of 1 5. It is also formed by the thermal decomposition of phosphonic acid. Unlike the chemistry of phosphoric acid, thermal dehydration does not lead to polymers beyond the dimer extended dehydration leads to a disproportionation to condensed forms of phosphoric acid, such as [2466-09-3] and phosphine. [Pg.374]

The second major route to diarylamiaes is the condensation of an aromatic amine with a phenol. Aniline [62-53-3] phenol [108-95-2] and 3.5% phosphoric acid at 325°C gives a 50% yield of DPA (23). Apparently, this reaction iavolves the addition of aniline to the keto form of the phenol. Thus, naphthols and hydroquiaone are more reactive and give higher yields of product. This is the preferred route to A/-phenyi-2-naphthyiamiQe, 4-hydroxydiphenyiamiQe, and diphenyl- -phenylenediamine (24). [Pg.244]

Citral reacts in an aldol condensation using excess acetone and a basic catalyst, usually sodium hydroxide. The excess acetone can be recovered for recycle. The resulting intermediate pseudoionone [141-10-6] (83) after cyclization with phosphoric acid gives predominantly a-ionone [127-41 -3] (84), which is the isomer commercially important in flavors and fragrances. A hydrocarbon solvent is generally necessary in order to get high yields. P-Ionone [14901-07-6] (85) is the predominant isomer if sulfuric acid is used as the catalyst but lower temperature than that for cyclization to a-ionone is required. y-Ionone [79-6-5] (86) is also produced. [Pg.424]

Ferrocene (46.4 g., 0.250 mole) (Note 1) is added to a well-stirred solution of 43.2 g. (0.422 mole) of bis(dimethylamino)-methane (Note 2) and 43.2 g. of phosphoric acid in 400 ml. of acetic acid in a 2-1. three-necked round-bottomed flask equipped with a condenser, a nitrogen inlet, and a mechanical stirrer (Note 3). The resulting suspension is heated on a steam bath under a slow stream of nitrogen (Note 4) for 5 hours (Note 5). The reaction mixture, a dark-amber solution, is allowed to cool to room temperature and is diluted with 550 ml. of water. The unreacted ferrocene is removed by extracting the solution with three 325-ml. jiortions of ether. The aqueous solution is then looled in ice water and made alkaline by the addition of 245 g. [Pg.31]

Condensations using catalysts such as phosphoric acid ... [Pg.1024]

Diphenylamine—Phosphoric Acid Reagent), these condense with aniline to Schiff s... [Pg.188]

All the above substances must be dry. The acetic acid is frozen in ice, and any liquid drained off, and the led phosphorus is washed with water to free it from phosphoric acid, dried in the steam oven, and kept over sulphuric acid in a desiccator until required. The bromine is placed in a separating funnel with half its volume of concentrated sulphuric acid overnight, and then separated. The apparatus is shown in Fig. 63. It consists of a round flask (250 c.c.) attached to an upright condenser, which is provided with a cork. A tap-funnel containing the bromine passes through one hole, and a wide bent tube, attached at its lower end to a funnel, passes through the other. [Pg.89]

Proceeding from 5 -0-acetylazauridine (80), a mixture of 2 - and 3 -monophosphates (81, 82) was prepared by phosphorylation with polyphosphoric acid, and these were converted into the 2, 3 -cyclic phosphate (83). From the 2, 3 -0-isopropylidene derivative of 3-methyl-6-azauridine the 5 -phosphate was prepared by treatment with cyanoethylphosphate and the corresponding diphosphate from its morpholidate through the action of phosphoric acid. ° Furthermore, a diribonucleoside phosphate (85) with a natural 3 -5 internucleotide linkage was prepared from 6-azauridine, The starting material for the preparation of such derivatives was 5 -0-acetyl-2 -0 -tetrahydro-pyranyluridine-3 -phosphate (84) which was condensed with di-G-acetylazauridine (86) or with 2b3 -0-isopropylidene-6-azauridine (76) with the aid of dicyclohexylcarbodiimide. ... [Pg.218]


See other pages where Phosphoric acid condensed acids is mentioned: [Pg.934]    [Pg.516]    [Pg.851]    [Pg.851]    [Pg.809]    [Pg.135]    [Pg.493]    [Pg.509]    [Pg.851]    [Pg.742]    [Pg.309]    [Pg.320]    [Pg.493]    [Pg.475]    [Pg.323]    [Pg.328]    [Pg.330]    [Pg.372]    [Pg.373]    [Pg.50]    [Pg.5]    [Pg.370]    [Pg.409]    [Pg.1087]    [Pg.1437]    [Pg.1052]    [Pg.473]    [Pg.809]   
See also in sourсe #XX -- [ Pg.475 ]




SEARCH



Condensation of phosphoric acid

Condensed phosphoric acids

Condensed phosphoric acids synthesis

Condensed phosphorous

Phosphoric acid condensation reactions

© 2024 chempedia.info