Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phospholipids phosphatidylethanolamine

Escherichia coli contains three important classes of phospholipids phosphatidylethanolamine (75%-85%), phosphatidylglycerol (10%-20%), and diphosphatidylglycerol (5%-15%). All three of these phospholipids share the same biosynthetic pathway up to the formation of CDP-diacyl-glycerol (fig. 19.2), after which the pathways branch (fig. 19.3). [Pg.438]

Thus, by combining the NADH-ubiquinone reductase complex with a heterogeneous fraction solubilized from bovine heart submitochondrial fractions (referred to as hydrophobic protein ) and phospholipids (phosphatidylethanolamine, phosphatidylcholine, cardiolipid), Ragan and Racker and his associates [146] were able to reconstitute vesicles. These vesicles, which can be isolated on sucrose gradients, carry on the phosphorylation of ADP to ATP, and the oxidative phosphorylation is sensitive to uncouplers. [Pg.51]

Other Reactions of Phospholipids. The unsaturated fatty acid groups in soybean lecithin can be halogenated. Acetic anhydride combined with the amino group of phosphatidylethanolamine forms acetylated compounds. PhosphoHpids form addition compounds with salts of heavy metals. Phosphatidylethanolamine and phosphatidjhnositol have affinities for calcium and magnesium ions that are related to interaction with their polar groups. [Pg.99]

Mammals synthesize phosphatidylserine (PS) in a calcium ion-dependent reaction involving aminoalcohol exchange (Figure 25.21). The enzyme catalyzing this reaction is associated with the endoplasmic reticulum and will accept phosphatidylethanolamine (PE) and other phospholipid substrates. A mitochondrial PS decarboxylase can subsequently convert PS to PE. No other pathway converting serine to ethanolamine has been found. [Pg.821]

These compounds constimte as much as 10% of the phospholipids of brain and muscle. StmcmraUy, the plasmalogens resemble phosphatidylethanolamine but possess an ether link on the sn- carbon instead of the ester link found in acylglycerols. Typically, the alkyl radical is an unsamrated alcohol (Figure 14-10). In some instances, choline, serine, or inositol may be sub-stimted for ethanolamine. [Pg.116]

Figure 24-2. Biosynthesis of triaq/lglycerol and phospholipids. ( , Monoacylglycerol pathway (D, glycerol phosphate pathway.) Phosphatidylethanolamine may be formed from ethanolamine by a pathway similar to that shown for the formation of phosphatidylcholine from choline. Figure 24-2. Biosynthesis of triaq/lglycerol and phospholipids. ( , Monoacylglycerol pathway (D, glycerol phosphate pathway.) Phosphatidylethanolamine may be formed from ethanolamine by a pathway similar to that shown for the formation of phosphatidylcholine from choline.
The major lipid classes are phospholipids and cholesterol the major phospholipids are phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS) along with sphingomyelin (Sph). [Pg.615]

FIGURE 12.4 (A) Diagrammatic representation of the separation of major simple lipid classes on silica gel TLC — solvent system hexane diethylether formic acid (80 20 2) (CE = cholesteryl esters, WE = wax esters, HC = hydrocarbon, EEA = free fatty acids, TG = triacylglycerol, CHO = cholesterol, DG = diacylglycerol, PL = phospholipids and other complex lipids). (B) Diagrammatic representation of the separation of major phospholipids on silica gel TLC — solvent sytem chloroform methanol water (70 30 3) (PA = phosphatidic acid, PE = phosphatidylethanolamine, PS = phosphatidylserine, PC = phosphatidylcholine, SPM = sphingomyelin, LPC = Lysophosphatidylcholine). [Pg.311]

Koryta et al. [48] first stressed the relevance of adsorbed phospholipid monolayers at the ITIES for clarification of biological membrane phenomena. Girault and Schiffrin [49] first attempted to characterize quantitatively the monolayers of phosphatidylcholine and phos-phatidylethanolamine at the ideally polarized water-1,2-dichloroethane interface with electrocapillary measurements. The results obtained indicate the importance of the surface pH in the ionization of the amino group of phosphatidylethanolamine. Kakiuchi et al. [50] used the video-image method to study the conditions for obtaining electrocapillary curves of the dilauroylphosphatidylcholine monolayer formed on the ideally polarized water-nitrobenzene interface. This phospholipid was found to lower markedly the surface tension by forming a stable monolayer when the interface was polarized so that the aqueous phase had a negative potential with respect to the nitrobenzene phase [50,51] (cf. Fig. 5). [Pg.429]

Therefore, it is currently believed that anandamide is formed from membrane phospholipids (Fig. 4) through a pathway that involves (1) a trans-acylation of the amino group of phosphatidylethanolamine with arachidonate from the sn-1 position of phosphatidylcholine and (2) a D-type phosphodiesterase activity on the resulting A-arachidonylphosphati-dylethanolamide (NAPE). Synthesis of anandamide is presumably regulated at the levels of both enzymes, the A-acyltranferase and the phospholipase D, by stimuli that raise intracellular calcium or by receptors linked with cAMP and PKA. It has been shown that anandamide is formed when neurons are depolarized and, therefore, the intracellular calcium ion levels are elevated (Cadas, 1996). [Pg.106]

Zalipsky S, Qazen M, Walker JA 2nd, Mullah N, Quinn YP, Huang SK (1999) New detachable poly(ethylene glycol) conjugates cysteine-cleavable lipopolymers regenerating natural phospholipid, diacyl phosphatidylethanolamine. Bioconjug Chem 10 703-707... [Pg.137]

The correct ratio of lipid constituents is important to form stable liposomes. For instance, a reliable liposomal composition for encapsulating aqueous substances may contain molar ratios of lecithin cholesterol negatively charged phospholipid (e.g., phosphatidyl glycerol (PG)) of 0.9 1 0.1. A composition that is typical when an activated phosphatidylethanolamine (PE) derivative is included may contain molar ratios of phosphatidylcholine (PC) cholesterol PG derivatized PE of 8 10 1 1. Another typical composition using a maleimide derivative of PE without PG is PC male-imide-PE cholesterol of 85 15 50 (Friede et al., 1993). In general, to maintain membrane stability, the PE derivative should not exceed a concentration ratio of about l-10mol PE per lOOmol of total lipid. [Pg.861]

Glycerol utilization depends on the tissue. Adipose tissue can t use glycerol. Nitrogen-containing phospholipids are made from diglycerides, while other phospholipids are made from phosphatidic acid (PA). PI = phosphatidylinosi-tol PC = phosphatidylcholine PE = phosphatidylethanolamine PS = phos-phatidylserine. [Pg.176]

In the above subsection it was demonstrated that the inclusion of electrostatic interactions into the pressure-area-temperature equation of state provides a better fit to the observed equilibrium behavior than the model with two-dimensional neutral gas. Considering this fact, we would like to devote our attention now to the character of the lipid film under the dynamical, nonequilibrium conditions. In the following we shall describe the dynamical behavior of the phospholipid(l,2-dipalmitoyl-3-sn-phosphatidylethanolamines DPPE) thin films in the course of the compression and expansion cycles at air/water interface. [Pg.240]

Electroneutral phospholipids Phosphatidylcholine, phosphatidyl-ethanol, phosphatidylethanolamine... [Pg.15]

The architecture of the CM bilayer is symmetrical, with an equal distribution of the lipids (exclusively phospholipids, mainly phosphatidylethanolamine, phosphatidylglycerol and cardiolipin) among the inner and the outer leaflet. In principle, this holds true for most bacteria, except for those living at extremely high temperatures. For further information, see also Chapter 1 of this volume. [Pg.274]

Anandamide is believed to be synthesized from a phospholipid precursor, /V-arachidonoyl-phosphatidylethanolamine, catalysed by phospholipase D (Di Marzo et al. 1998). The other proposed route of synthesis is from condensation of arachidonic acid and ethanolamine, although this has yet to be demonstrated in living cells. 2-AG is formed in a calcium-dependent manner, and mediated by the enzymes phospholipase C and diacylglycerol lipase (Kondo et al. 1998 Stella et al. 1997). [Pg.412]

Today s mitochondria lack most of the genes involved in phosphohpid metabolism. Therefore, mitochondria have to import most of their hpids. Phospholipids such as phosphatidylcholine, phosphatidylserine, phosphatidylglycerol, and phosphatidylinositol must be synthesized in the endoplasmatic reticulum under the control of nuclear genes and then transferred to mitochondria (Voelker, 2000) (Figure 1). Mitochondria use both nuclear and mitochondrial encoded proteins to further diversify phospholipids (Dowhan, 1997 Kent, 1995 Daum, 1985). Thus, a nuclear phosphatidylserine decarboxylase converts phosphatidylserine into phosphatidylethanolamine, or mitochondrial encoded cardiolipin synthase converts phosphatidylglycerol into cardiolipin which is incorporated exclusively into the inner mitochondrial membrane. [Pg.2]

Figure 1. Control of mitochondrial biogenesis by the nuclear genome. Most mitochondrial proteins, including cytochrome c, are nuclear gene products which are subsequently imported into mitochondria. Similarly, most enzymes involved in synthesis of mitochondrial phosphoplipids are encoded in the nuclear genome. Being located in the endoplasmatic reticulum, they synthesize phosphatidylcholine (PtdCho), phosphatidylserine (PtdSer), phosphatidylglycerol (PG) and phosphatidylinositol (Ptdins). The phospholipids are transferred to the outer membrane. The imported lipids then move into the inner membrane at contact sites. Mitochondria then diversify phospholipids. They decarboxylate phosphatidylserine to phosphatidylethanolamine (PtdEtN), but the main reaction is the conversion of imported phosphatidylglycerol to cardiolipin (CL). Cardiolipins localize mainly in the outer leaflet of the inner membrane. Figure 1. Control of mitochondrial biogenesis by the nuclear genome. Most mitochondrial proteins, including cytochrome c, are nuclear gene products which are subsequently imported into mitochondria. Similarly, most enzymes involved in synthesis of mitochondrial phosphoplipids are encoded in the nuclear genome. Being located in the endoplasmatic reticulum, they synthesize phosphatidylcholine (PtdCho), phosphatidylserine (PtdSer), phosphatidylglycerol (PG) and phosphatidylinositol (Ptdins). The phospholipids are transferred to the outer membrane. The imported lipids then move into the inner membrane at contact sites. Mitochondria then diversify phospholipids. They decarboxylate phosphatidylserine to phosphatidylethanolamine (PtdEtN), but the main reaction is the conversion of imported phosphatidylglycerol to cardiolipin (CL). Cardiolipins localize mainly in the outer leaflet of the inner membrane.
Figure 1. Percent distribution of major phospholipids between the outer and cytoplasmic leaflets of the human erythrocyte membrane. SM, sphingomyelin PC, phosphatidylcholine PE, phosphatidylethanolamine PS, phosphatidylserine PI, phosphatidylethanolamine... Figure 1. Percent distribution of major phospholipids between the outer and cytoplasmic leaflets of the human erythrocyte membrane. SM, sphingomyelin PC, phosphatidylcholine PE, phosphatidylethanolamine PS, phosphatidylserine PI, phosphatidylethanolamine...
It can be seen from Figure 1 that the choline-containing phospholipids, phosphatidylcholine and sphingomyelin are localized predominantly in the outer monolayer of the plasma membrane. The aminophospholipids, conprising phosphatidylethanolamine and phosphatidylserine, by contrast, are enriched in the cytoplasmic leaflet of the membrane (Bretcher, 1972b Rothman and Lenard, 1977 Op den Kamp, 1979). The transmembrane distribution of the minor membrane lipid components has been determined by reaction with lipid-specific antibodies (Gascard et al, 1991) and lipid hydrolases (Biitikofer et al, 1990). Such studies have shown that phosphatidic acid, phosphatidylinositol and phosphatidylinositol-4,5-fc -phosphate all resemble phosphatidylethanolamine in that about 80% of the phospholipids are localized in the cytoplasmic leaflet of the membrane. [Pg.40]

The appearance of anionic phospholipids, particularly phosphatidylserine, on the cell siuface activates prothrombinase complex culminating in the formation of thrombin (Bevers et al., 1982 Connor et al., 1989). The assay can be performed with pure coagulation proteins and specific chromogenic substtates to produce a very sensitive test to detect the appearance of phosphatidylserine on ceU siufaces. Nevertheless, it has been shown that changes in the disposition of phosphatidylethanolamine and sphingomyelin may interfere with the ability of phosphatidylserine-containing membranes to activate prothrombinase (Smeets et al., 1996). [Pg.41]


See other pages where Phospholipids phosphatidylethanolamine is mentioned: [Pg.169]    [Pg.357]    [Pg.456]    [Pg.510]    [Pg.425]    [Pg.491]    [Pg.107]    [Pg.423]    [Pg.169]    [Pg.357]    [Pg.456]    [Pg.510]    [Pg.425]    [Pg.491]    [Pg.107]    [Pg.423]    [Pg.463]    [Pg.967]    [Pg.262]    [Pg.309]    [Pg.44]    [Pg.203]    [Pg.209]    [Pg.310]    [Pg.312]    [Pg.31]    [Pg.320]    [Pg.754]    [Pg.777]    [Pg.809]    [Pg.920]    [Pg.218]    [Pg.119]    [Pg.365]    [Pg.244]    [Pg.8]   


SEARCH



Phosphatidylethanolamine

© 2024 chempedia.info