Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phenoxide ions, alkylation

Detailed mechanistic studies have been carried out on aminolysis of substituted aryl acetates and aryl carbonates. Aryl esters are considerably more reactive than alkyl esters because the phenoxide ions are better leaving groups than alkoxide ions. The tetrahedral intermediate formed in aminolysis can exist in several forms which differ in extent and site of protonation ... [Pg.480]

Dichloro-s-triazine and its 6-alkyl analogs are as easily hydrolyzed by water as trichloro-s-triazine and, on suspension in aqueous ammonia (25°, 16 hr), the first is diaminated in good yield. 2,4-Bistrichloromethyl-6-methyl- and -6-phenyl-s-triazines (321) require a special procedure for mono-alkoxylation (0-20°, 16 hr, alcoholic triethylamine) disubstitution occurs at reflux temperature (8 hr). Aqueous triethylamine (100°, 3 hr) causes complete hydroxy-lation of 2,4,6-tris-trichloromethyl-s-triazine which can be mono-substituted with ammonia, methylamine, or phenoxide ion at 20°. [Pg.301]

Ethers can be prepared by reaction of an alkoxide or phenoxide ion with a primary alkyl halide. Anisole, for instance, results from reaction of sodium phenoxide with iodomethane. What kind of reaction is occurring Show the mechanism. [Pg.651]

Unlike the acid-catalyzed ether cleavage reaction discussed in the previous section, which is general to all ethers, the Claisen rearrangement is specific to allyl aryl ethers, Ar—O—CH2CH = CH2. Treatment of a phenoxide ion with 3-bromopropene (allyl bromide) results in a Williamson ether synthesis and formation of an allyl aryl ether. Heating the allyl aryl ether to 200 to 250 °C then effects Claisen rearrangement, leading to an o-allylphenol. The net result is alkylation of the phenol in an ortho position. [Pg.659]

Phenoxide Ions. These ions, which are analogous to enolate ions, can undergo C- or 0-alkylation ... [Pg.459]

The solvent can also affect regioselectivity. Consider O- vs C-alkylation of phenoxide ion with allyl chloride or bromide. In water, with allyl chloride the O- to C-alkylation ratio is 49 41 with phenol as a solvent it is 22 78 with methanol, dimethylformamide, and dioxane 100% O-alkylation is achieved. The selective solvation of the more electronegative O by the more protic solvents perhaps leads to some C-alkylations. [Pg.180]

Alkylations of phenoxide ions in water have recently been carefully studied by Breslow et al.57 Alkylation can occur both at the phenoxide oxygen and on ortho and para positions of the ring when the phenoxide has at least one alkyl substituent (Eq. 5.4). Carbon alkylation occurs in water, but not in nonpolar organic solvents. This is attributed to the antihydrophobic effect of the organic solvents. [Pg.155]

For carbon-carbon bond-formation purposes, S 2 nucleophilic substitutions are frequently used. Simple S 2 nucleophilic substitution reactions are generally slower in aqueous conditions than in aprotic organic solvents. This has been attributed to the solvation of nucleophiles in water. As previously mentioned in Section 5.2, Breslow and co-workers have found that cosolvents such as ethanol increase the solubility of hydrophobic molecules in water and provide interesting results for nucleophilic substitutions (Scheme 6.1). In alkylations of phenoxide ions by benzylic chlorides, S/y2 substitutions can occur both at the phenoxide oxygen and at the ortho and para positions of the ring. In fact, carbon alkylation occurs in water but not in nonpolar organic solvents and it is observed only when the phenoxide has at least one methyl substituent ortho, meta, or para). The effects of phenol substituents and of cosolvents on the rates of the competing alkylation processes... [Pg.177]

Breslow and co-workers have found that cosolvents such as ethanol increase the solubility of hydrophobic molecules in water and provide interesting results for nucleophilic substitutions of phenoxide ions by benzylic chlorides carbon alkylation occurs in water but not in nonpolar organic solvents, and it is observed only when the phenoxide has at least one methyl substituent (ortho, meta, or para). This has been discussed in Chapter 6 (Section 6.4.2). [Pg.208]

Still another possibility in the base-catalyzed reactions of carbonyl compounds is alkylation or similar reaction at the oxygen atom. This is the predominant reaction of phenoxide ion, of course, but for enolates with less resonance stabilization it is exceptional and requires special conditions. Even phenolates react at carbon when the reagent is carbon dioxide, but this may be due merely to the instability of the alternative carbonic half ester. The association of enolate ions with a proton is evidently not very different from the association with metallic cations. Although the equilibrium mixture is about 92 % ketone, the sodium derivative of acetoacetic ester reacts with acetic acid in cold petroleum ether to give the enol. The Perkin ring closure reaction, which depends on C-alkylation, gives the alternative O-alkylation only when it is applied to the synthesis of a four membered ring ... [Pg.226]

Phenoxide ions are a special case related to enolate anions but with a strong preference for O-alkylation because C-alkylation disrupts aromatic conjugation. [Pg.27]

The so-called Williamson synthesis of ethers is by far the most important ether synthesis because of its versatility it can be used to make unsymmetrical ethers as well as symmetrical ethers, and aryl alkyl ethers as well as dialkyl ethers. These reactions involve the nucleophilic substitution of alkoxide ion or phenoxide ion for halide (equation 70).26°... [Pg.355]

Phenols can be converted into esters by reaction with acid chlorides or acid anhydrides and into ethers by reaction with alkyl halides in the presence of base (Following fig.). These reactions can be done under milder conditions than those used for alcohols due to the greater acidity of phenols. Thus phenols can be converted to phenoxide ions with sodium hydroxide rather than metallic sodium. [Pg.15]

It is a useful method of introducing an alkyl substituent to the ortho position of a phenol. The phenol gets converted to the phenoxide ion, then treated with 3-bromopropene (an alkyl bromide) to form an ether. [Pg.17]

The anions of phenols (phenoxide ions) may be used in the Williamson ether synthesis, especially with very reactive alkylating reagents such as dimethyl sulfate. Using phenol, dimethyl sulfate, and other necessary reagents, show how you would synthesize methyl phenyl ether. [Pg.502]

Synthesis of Phenyl Ethers A phenol (aromatic alcohol) can be used as the alkoxide fragment, but not the halide fragment, for the Williamson ether synthesis. Phenols are more acidic than aliphatic alcohols (Section 10-6), and sodium hydroxide is sufficiently basic to form the phenoxide ion. As with other alkoxides, the electrophile should have an unhindered primary alkyl group and a good leaving group. [Pg.636]

The Williamson synthesis involves nucleophilic substitution of alkoxide ion or phenoxide ion for halide ion it is strictly analogous to the preparation of alcohols by treatment of alkyl halides with aqueous hydroxide (Sec. 15.7). Aryl halides cannot in general be used, because of their low reactivity toward nucleophilic substitution. [Pg.556]

As already discussed (Sec. 17.5), phenols are converted into ethers by reaction in alkaline solution with alkyl halides methyl ethers can also be prepared by reaction with methyl sulfate. In alkaline solutions a phenol exists as the phenoxide ion which, acting as a nucleophilic reagent, attacks the halide (or the sulfate) and displaces halide ion (or sulfate ion). [Pg.799]

Phenols are more acidic than alcohols because one of the non-bonding electron pairs on oxygen is drawn into the benzene ring by resonance. This stabilizes the phenoxide ion that is formed upon ionization and thus the acidity of phenol is enhanced by the phenomenon. This same withdrawal of electrons by the benzene ring stabilizes aniline and decreases the availability of the nonbonding electron pair on nitrogen. Both effects decrease the basicity of aniline relative to alkyl amines. [Pg.248]


See other pages where Phenoxide ions, alkylation is mentioned: [Pg.144]    [Pg.248]    [Pg.460]    [Pg.306]    [Pg.80]    [Pg.124]    [Pg.886]    [Pg.107]    [Pg.79]    [Pg.90]    [Pg.367]    [Pg.94]    [Pg.62]    [Pg.190]    [Pg.42]    [Pg.79]    [Pg.84]    [Pg.58]    [Pg.516]    [Pg.498]    [Pg.256]    [Pg.494]    [Pg.369]    [Pg.456]   
See also in sourсe #XX -- [ Pg.366 ]




SEARCH



Phenoxide

Phenoxide ion

© 2024 chempedia.info