Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phase separations formation

Independent of the mechanism, the blend s final morphology is the result of the cross-link formation and phase separation formation during the cure, being both highly interlaced. Optical and mechanical blend properties are affected by final morphology, defining the material application [27,30,32]. [Pg.7]

Some small amount of byproduct formation occurs. The principal byproduct is di-isopropyl ether. The reactor product is cooled, and a phase separation of the resulting vapor-liquid mixture produces a vapor containing predominantly propylene and propane and a liquid containing predominantly the other components. Unreacted propylene is recycled to the reactor, and a purge prevents the buildup of propane. The first distillation in Fig. 10.3a (column Cl) removes... [Pg.281]

A study by Bames and co-workers of the equilibrium spreading behavior of dimyristol phosphatidylcholine (DMPC) reconciles the differences between spreading of bulk solids and dispersions of liposomes [41]. This study shows the formation of multibilayers below the monolayer at the air-water interface. An incipient phase separation, undetectable by microscopy, in DMPC-cholesterol... [Pg.544]

Most LB-forming amphiphiles have hydrophobic tails, leaving a very hydrophobic surface. In order to introduce polarity to the final surface, one needs to incorporate bipolar components that would not normally form LB films on their own. Berg and co-workers have partly surmounted this problem with two- and three-component mixtures of fatty acids, amines, and bipolar alcohols [175, 176]. Interestingly, the type of deposition depends on the contact angle of the substrate, and, thus, when relatively polar monolayers are formed, they are deposited as Z-type multilayers. Phase-separated LB films of hydrocarbon-fluorocarbon mixtures provide selective adsorption sites for macromolecules, due to the formation of a step site at the domain boundary [177]. [Pg.560]

Interactions between nonpolar compounds are generally stronger in water than in organic solvents. At concentrations where no aggregation or phase separation takes place, pairwise hydrophobic interactions can occur. Under these conditions, the lowest energy state for a solute molecule is the one in which it is completely surrounded by water molecules. However, occasionally, it will also meet other solute molecules, and form short-lived encounter complexes. In water, the lifetime of these complexes exceeds that in organic solvents, since the partial desolvation that accompanies the formation of these complexes is less unfavourable in water than in organic solvents. [Pg.167]

The in situ process is simpler because it requires less material handling (35) however, this process has been used only for resole resins. When phenol is used, the reaction system is initially one-phase alkylated phenols and bisphenol A present special problems. As the reaction with formaldehyde progresses at 80—100°C, the resin becomes water-insoluble and phase separation takes place. Catalysts such as hexa produce an early phase separation, whereas NaOH-based resins retain water solubiUty to a higher molecular weight. If the reaction medium contains a protective coUoid at phase separation, a resin-in-water dispersion forms. Alternatively, the protective coUoid can be added later in the reaction sequence, in which case the reaction mass may temporarily be a water-in-resin dispersion. The protective coUoid serves to assist particle formation and stabUizes the final particles against coalescence. Some examples of protective coUoids are poly(vinyl alcohol), gum arabic, and hydroxyethjlceUulose. [Pg.298]

Methyl formate and propylene oxide have close boiling poiats, making separation by distillation difficult. Methyl formate is removed from propylene oxide by hydrolysis with an aqueous base and glycerol, followed by phase separation and distillation (152,153). Methyl formate may be hydrolyzed to methanol and formic acid by contacting the propylene oxide stream with a basic ion-exchange resia. Methanol and formic acid are removed by extractive distillation (154). [Pg.139]

Solvent Extraction. Solvent extraction has widespread appHcation for uranium recovery from ores. In contrast to ion exchange, which is a batch process, solvent extraction can be operated in a continuous countercurrent-fiow manner. However, solvent extraction has a large disadvantage, owing to incomplete phase separation because of solubihty and the formation of emulsions. These effects, as well as solvent losses, result in financial losses and a potential pollution problem inherent in the disposal of spent leach solutions. For leach solutions with a concentration greater than 1 g U/L, solvent extraction is preferred. For low grade solutions with <1 g U/L and carbonate leach solutions, ion exchange is preferred (23). Solvent extraction has not proven economically useful for carbonate solutions. [Pg.317]

For extraction of uranium from sulfate leach Hquors, alkyl phosphoric acids, alkyl phosphates, and secondary and tertiary alkyl amines are used in an inert diluent such as kerosene. The formation of a third phase is suppressed by addition of modifiers such as long-chain alcohols or neutral phosphate esters. Such compounds also increase the solubihty of the amine salt in the diluent and improve phase separation. [Pg.317]

Because of the aqueous solubiUty of polyelectrolyte precursor polymers, another method of polymer blend formation is possible. The precursor polymer is co-dissolved with a water-soluble matrix polymer, and films of the blend are cast. With heating, the fully conjugated conducting polymer is generated to form the composite film. This technique has been used for poly(arylene vinylenes) with a variety of water-soluble matrix polymers, including polyacrjiamide, poly(ethylene oxide), polyvinylpyrroHdinone, methylceUulose, and hydroxypropylceUulose (139—141). These blends generally exhibit phase-separated morphologies. [Pg.39]

This type of mechanism has been considered by Barnard et al. [83]. They postulate the initiation of the charging reaction at the Ni(OH)2 /current collector interface with the formation of a solid solution of Nij ions in Ni(OH)2. With further charging when a fixed nickel ion composition (Ni2+)v (Ni, +)1 A. is reached, phase separation occurs with the formation of two phases, one with the composition (Ni2+), r (Ni3+)v in contact with the cur-... [Pg.147]

The formation mechanism of structure of the crosslinked copolymer in the presence of solvents described on the basis of the Flory-Huggins theory of polymer solutions has been considered by Dusek [1,2]. In accordance with the proposed thermodynamic model [3], the main factors affecting phase separation in the course of heterophase crosslinking polymerization are the thermodynamic quality of the solvent determined by Huggins constant x for the polymer-solvent system and the quantity of the crosslinking agent introduced (polyvinyl comonomers). The theory makes it possible to determine the critical degree of copolymerization at which phase separation takes place. The study of this phenomenon is complex also because the comonomers act as diluents. [Pg.4]

The mechanism of phase separation proposed here (and also observed experimentally) involves the formation in the first stage of polymer blanks1, the globules size depends on the initial comonomers and the copolymerization conditions. In the case of slow phase separation proceeding near the thermodynamic equilibrium... [Pg.4]


See other pages where Phase separations formation is mentioned: [Pg.133]    [Pg.133]    [Pg.480]    [Pg.546]    [Pg.262]    [Pg.125]    [Pg.167]    [Pg.75]    [Pg.72]    [Pg.288]    [Pg.289]    [Pg.329]    [Pg.251]    [Pg.410]    [Pg.137]    [Pg.370]    [Pg.248]    [Pg.260]    [Pg.228]    [Pg.468]    [Pg.98]    [Pg.2060]    [Pg.191]    [Pg.311]    [Pg.323]    [Pg.18]    [Pg.82]    [Pg.331]    [Pg.325]    [Pg.474]    [Pg.599]    [Pg.156]    [Pg.174]    [Pg.219]    [Pg.221]    [Pg.302]    [Pg.493]    [Pg.63]    [Pg.64]   
See also in sourсe #XX -- [ Pg.107 ]




SEARCH



Capsule Formation by Phase Separation

Membrane formation phase separation

Phase Separation and Domain Formation

Phase formation

Phase separation network formation

Polymer phase separation, pattern formation

© 2024 chempedia.info