Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

2-Phase medium, reaction

Phase s. a. Solid phase 2-Phase medium, reaction in —... [Pg.345]

Pfenninger s. Staudinger Pfitzner-Moffati reagent 21, 284 pH s. Buffer solns.. Regulators 2-Phase medium, reactions in -0-debenzylation, preferential 22,11 oxidation 21, 730 Phenacetyl chloride as reagent 22, 535... [Pg.279]

The diazo transfer reaction between p-toluenesulfonyl azide and active methylene compounds is a useful synthetic method for the preparation of a-diazo carbonyl compounds. However, the reaction of di-tert-butyl malonate and p-toluenesulfonyl azide to form di-tert-butyl diazomalonate proceeded to the extent of only 47% after 4 weeks with the usual procedure." The present procedure, which utilizes a two-phase medium and methyltri-n-octylammonium chloride (Aliquat 336) as phase-transfer catalyst, effects this same diazo transfer in 2 hours and has the additional advantage of avoiding the use of anhydrous solvents. This procedure has been employed for the preparation of diazoacetoacetates, diazoacetates, and diazomalonates (Table I). Ethyl and ten-butyl acetoacetate are converted to the corresponding a-diazoacetoacetates with saturated sodium carbonate as the aqueous phase. When aqueous sodium hydroxide is used with the acetoace-tates, the initially formed a-diazoacetoacetates undergo deacylation to the diazoacetates. Methyl esters are not suitable substrates, since they are too easily saponified under these conditions. [Pg.35]

Usually distinct solid phase Same phase as reaction medium... [Pg.87]

A second liquid phase may be deliberately employed in an emulsified form to gain advantages similar to those cited earlier for organic processes. Such two-phase systems, and even two-phase enzymatic reactions, allow both the electrochemistry and organic chemistry to take place in their optimum medium. Further, the aqueous phase allows acidity to be controlled in the organic medium and the organic phase allows the desired intermediate product to be extracted to improve yields. [Pg.167]

Biocatalysis localization in the biphasic medium depends on physicochemical properties of the reactants. When all the chemical species involved in the reaction are hydro-phobic, catalysis occurs at the liquid-liquid interface. However, when the substrate is hydrophobic (initially dissolved in the apolar phase) and the product is hydrophilic (remains in the aqueous phase), the reaction occurs in the aqueous phase [25]. The majority of biphasic systems use sparingly water-soluble substrates and yield hydrophobic products therefore, the aqueous phase serves as a biocatalyst container [34,35] [Fig. 2(a)]. Nevertheless, in some systems, one of the reactants (substrate or product) can be soluble in the aqueous phase [23,36-38] (Fig. 2(b), (c)). [Pg.557]

When the initial LA concentration is large, the quantity of substrate transferred to the aqueous phase allows the lipoxygenation to progress. This reaction consumes LA and produces HP, which favor the transfer of residual substrate between the two phases. Then catalysis and transfer have a reciprocal influence on each other. We demonstrated that the use of a non-allosteric enzyme in a compartmentalized medium permits the simulation of a co-operativity phenomenon. The optimal reaction rate in the two-phase system is reached for a high initial LA concentration 14 mM. Inhibition by substrate excess is observed in two-phase medium. [Pg.574]

The mobile phase in LC-MS may play several roles active carrier (to be removed prior to MS), transfer medium (for nonvolatile and/or thermally labile analytes from the liquid to the gas state), or essential constituent (analyte ionisation). As LC is often selected for the separation of involatile and thermally labile samples, ionisation methods different from those predominantly used in GC-MS are required. Only a few of the ionisation methods originally developed in MS, notably El and Cl, have found application in LC-MS, whereas other methods have been modified (e.g. FAB, PI) or remained incompatible (e.g. FD). Other ionisation methods (TSP, ESI, APCI, SSI) have even emerged in close relationship to LC-MS interfacing. With these methods, ion formation is achieved within the LC-MS interface, i.e. during the liquid- to gas-phase transition process. LC-MS ionisation processes involve either gas-phase ionisation (El), gas-phase chemical reactions (Cl, APCI) or ion evaporation (TSP, ESP, SSI). Van Baar [519] has reviewed ionisation methods (TSP, APCI, ESI and CF-FAB) in LC-MS. [Pg.500]

Hydrogenolysis of an aldehyde or ketone carbonyl to >CH2 is an important organic transformation, and classical procedures such as the Clemmenson and Wolff-Kishner reactions have limitations (24, 25) heterogeneous catalytic systems and several two-step procedures are also known (1, 24, 26). Our observation of this conversion in what is essentially a 2-phase medium... [Pg.140]

The variation of reaction rate with temperature follows the Arrhenius equation, which we have used to study the rate of chemical reactions in the interstellar medium ISM (Section 5.4, Equation 5.9), and can be applied to the liquid phase or reactions occurring on surfaces. Even the smallest increases in temperature can have a marked effect on the rate constants, as can be seen in the increased rate of chemical reactions at body temperature over room temperature. Considering a reaction activation energy that is of the order of a bond energy, namely 100 kJ mol-1, the ratio of the rate constants at 310 K and 298 K is given by ... [Pg.237]

The effect of the medium on the rates and routes of liquid-phase oxidation reactions was investigated. The rate constants for chain propagation and termination upon dilution of methyl ethyl ketone with a nonpolar solvent—benzene— were shown to be consistent with the Kirkwood equation relating the constants for bimolecular reactions with the dielectric constant of the medium. The effect of solvents capable of forming hydrogen bonds with peroxy radicals appears to be more complicated. The rate constants for chain propagation and termination in aqueous methyl ethyl ketone solutions appear to be lower because of the lower reactivity of solvated R02. .. HOH radicals than of free RO radicals. The routes of oxidation reactions are a function of the competition between two R02 reaction routes. In the presence of water the reaction selectivity markedly increases, and acetic acid becomes the only oxidation product. [Pg.162]

The aqueous phase that serves as a reaction medium in the atmosphere is present in the form of clouds, fogs, rain, and particulate matter consisting of either an aqueous solution containing pollutants or a film of water surrounding an insoluble core (see Chapter 9). For example, at typical relative humidities, 30-50% of the aerosol mass is due to water (Graedel and Weschler, 1981). However, many of the species that are believed to react in such atmospheric solutions, for example, S02, 03, H202, and NO, are emitted or formed in the gas phase. Before reactions can occur in solution, then, several steps illustrated in Fig. 5.12 must first take place ... [Pg.151]

The reaction takes place in a two-phase medium. Secondary alcohols form ketones (90%), primary alcohols and aldehydes are oxidized to carboxylic acids (60-77%), 1,2-diols are cleaved to carboxylic acids (75%), 1,4- and 1,5-diols are transformed to lactones and keto acids (75 %). [Pg.18]

A distinction must be made between truly isolated molecules which react in the absence of any collision with other molecules, as in the gas phase at very low pressures or in molecular beams, and molecules in liquid or solid environments. A condensed phase medium, liquid or solid, imposes a cage effect which can prevent large geometrical changes in rearrangement reactions, and the separation of fragments in dissociation reactions. [Pg.113]

Conditions for cytosolic incubations depend on the aim of the assay e.g. to cover specific enzymatic activity present in the cytosol. For this purpose it is essential to fortify the incubation medium with the specific cofactor for the reaction-if needed (Ekins 1999). (J> -Nicotinamide adenine dinucleotide (NAD) is needed for alcohol and aldehyde dehydrogenases, flavin adenine dinucleotide (FAD) for polyamine oxidase, P-nicotinamide adenine dinucleotide phosphate (NADPH) for Dihydropyrimidine dehydrogenase. Phase II reactions depend on PAPS (sulfotransferases,... [Pg.515]

The constituents are arranged in an alternating way, Mes/Cr/Mes/Cr/Mes. In general, liquid phase addition reactions occur at a metal site, pre-formed in a support medium that contains arene functionalities (48). Free arene substituents and organometallic tt-complexes can therefore trap a diffusing metal atom. Under well-defined conditions, such reactions are favored over competing metal atom polymerizations. [Pg.252]

A procedure was developed for the determination of total and labile Cu and Fe in river surface water. It involved simultaneous solvent extraction of the metals as diethyldithio-carbamates (ddc) and tfac complexes. The complexes were extracted by isobutyl methyl ketone (ibmk) and the solution subjected to flame atomic absorption spectrometry. Variables such as pH, metal complex concentration, reaction time, ibmk volume and extraction time were optimized. Prior to the solvent extraction a microwave-assisted peroxydisulfate oxidation was used to break down the metallorganic matter complexes in the river surface waters . Trifluoroacetylacetone was used as a chelation agent for the extraction and quantitative determination of total Cr in sea water. The chelation reaction was conducted in a single aqueous phase medium. Both headspace and liquid phase extractions were studied and various detection techniques, such as capillary GC-ECD, EI-MS (electron-impact MS) and ICP-MS, were tested and compared. The LOD was 11-15 ngL Cr for all the systems examined. The method provided accurate results with EI-MS and ICP-MS, while significant bias was experienced with ECD °. ... [Pg.726]


See other pages where 2-Phase medium, reaction is mentioned: [Pg.266]    [Pg.250]    [Pg.266]    [Pg.250]    [Pg.3068]    [Pg.159]    [Pg.200]    [Pg.36]    [Pg.14]    [Pg.237]    [Pg.92]    [Pg.437]    [Pg.33]    [Pg.357]    [Pg.176]    [Pg.303]    [Pg.78]    [Pg.79]    [Pg.331]    [Pg.71]    [Pg.119]    [Pg.165]    [Pg.67]    [Pg.156]    [Pg.303]    [Pg.149]    [Pg.411]    [Pg.467]    [Pg.468]    [Pg.224]   
See also in sourсe #XX -- [ Pg.27 , Pg.27 , Pg.60 ]




SEARCH



2-Phase medium

Fast Chemical Reactions in a Single-phase Reaction Mixture (Neutralisation of Acid and Alkali Media)

Interfacial reaction conditions s. 2-Phase medium

Medium, reaction

Phase-transfer catalysis in environmentally benign reaction media

Reaction media engineering phase

© 2024 chempedia.info