Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phase equilibrium between polymer

Thermodynamic Model for Phase Equilibrium between Polymer Solution and 6/W MlcroemulslonsT figures 6 and / show that when phase separation first occurs, most of the water is in the microemulsion. With an increase in salinity, however, much of the water shifts to the polymer solution. Thus, a concentrated polymer solution becomes dilute on increasing salinity. The objective of this model is to determine the partitioning of water between the microemulsion and the polymer-containing excess brine solution which are in equilibrium. For the sake of simplicity, it is assumed that there is no polymer in the microemulsion phase, and also no microemulsion drops in the polymer solution. The model is illustrated in Figure 12. The model also assumes that the value of the interaction parameter (x) or the volume of the polymer does not change with salinity. [Pg.240]

Although this theory accounts for a very important phenomenon in the physical chemistry of macromolecules, it fails utterly in those cases where dissolution occurs in spite of a positive E-value. Such cases are reported in the physical chemistry of rubbers and can only be explained by the non-ideal entropy of mixing (see section 6. d). Moreover, the experiments show that the polymer usually is not really insoluble in those cases where there does not exist complete miscibility the equilibrium attained is not an equilibrium between polymer and extremely dilute solution, but between a concentrated and a dilute phase. The composition of the concentrated phase is independent of the degree of polymeru ation, while that of the dilute phase is the smaller the larger the molecular weight. This will be explained on p. 78. [Pg.71]

The phase equilibrium between the external gas phase and the glassy polymer mixture is given by the usual relationship ... [Pg.127]

It is generally agreed that at least when inorganic compounds are used for initiation, the initiation and primary steps of polymerization occur in the aqueous phase. Since there is an equilibrium between polymer radicals in the aqueous phase and those absorbed at the surface of the polymer particles, two different loci of polymerization have to be considered. However, with an increasing number of polymer particles, polymerization in the aqueous phase becomes less and less important. [Pg.305]

There is a long history of observations of phase equilibrium in polymer solutions. Phase separation in polymer solutions was first considered in detail from a statistical thermodynamic view by Flory [27,40,41). In his original papers on the statistical thermodynamics of these systems, the conditions for equilibrium between two separated phases are the classical conditions of when the partial molar Gibbs free energies are the same for each phase. The partial molar free energies are... [Pg.114]

If there is phase equilibrium between two phases a and fi, we would have for component 3 , which we may take to be the polymer. [Pg.185]

The first group includes liquid-crystalline systems based on polymers containing mesogenic groups in the main chain wh they alternate with flexible firagments, or in the side chains where they are joined to the main chain by flexible spacers. Phase equilibrium between these systems is due to thermal transitions from the crystalline state to some type of liquid-crystalline phase and subsequently to an isotropic melt. [Pg.39]

The major differences between polymer and liquid electrolytes result from the physical stiffness of the PE. PEs are either hard-to-soft solids, or a combination of solid and molten in phases equilibrium. As a result, wetting and contact problems are to be expected at the Li/PE interface. In addition, the replacement of the native oxide layer covering the lithium, under the... [Pg.446]

Optimization of the valence and dihedral angles yields planar cyclic structures for the 3- to 5-ring intermediates in contrast to a chair conformation for that of the 6-ring. In the cases of n = 4, 5, 6 the oxygen atom is placed almost in the plane of the three C-atoms directly bonded to it. Therefore, an intramolecular solvation of the cationic chain end by methoxy groups which are bonded to the polymer backbone is preferred in the gas phase. The calculations show that for a non-polar solvent such as CH2C12 a decrease in stability of the cyclic intermediates exists. But this decrease does not result in a total break of the intramolecular solvation (Table 13). An equilibrium between open chain and cyclic intermediates must only be taken into account in more polar solvents, due to the competition of intra- and intermolecular solvation. [Pg.206]

There is a similar expression for polymer activity. However, if the fluid being sorbed by the polymer is a supercritical gas, it is most useful to use chemical potential for phase equilibrium calculations rather than activity. For example, at equilibrium between the fluid phase (gas) and polymer phase, the chemical potential of the gas in the fluid phase is equal to that in the liquid phase. An expression for the equality of chemical potentials is given by Cheng (12). [Pg.195]

Ic. Ternary Systems Consisting of a Single Polymer Component in a Binary SolventMixture.—Three conditions must be satisfied for equilibrium between two liquid phases in a system of three components. In place of the conditions (1) we have... [Pg.548]

The derivation of the quantitative relationship between this equilibrium temperature and the composition of the liquid phase may be carried out according to the well-known thermodynamic procedures for treating the depression of the melting point and for deriving solubility-temperature relations. The condition of equilibrium between crystalline polymer and the polymer unit in the solution may be restated as follows ... [Pg.568]

The concept of SPME was first introduced by Belardi and Pawliszyn in 1989. A fiber (usually fused silica) which has been coated on the outside with a suitable polymer sorbent (e.g., polydimethylsiloxane) is dipped into the headspace above the sample or directly into the liquid sample. The pesticides are partitioned from the sample into the sorbent and an equilibrium between the gas or liquid and the sorbent is established. The analytes are thermally desorbed in a GC injector or liquid desorbed in a liquid chromatography (LC) injector. The autosampler has to be specially modified for SPME but otherwise the technique is simple to use, rapid, inexpensive and solvent free. Optimization of the procedure will involve the correct choice of phase, extraction time, ionic strength of the extraction step, temperature and the time and temperature of the desorption step. According to the chemical characteristics of the pesticides determined, the extraction efficiency is often influenced by the sample matrix and pH. [Pg.731]

Essentially, extraction of an analyte from one phase into a second phase is dependent upon two main factors solubility and equilibrium. The principle by which solvent extraction is successful is that like dissolves like . To identify which solvent performs best in which system, a number of chemical properties must be considered to determine the efficiency and success of an extraction [77]. Separation of a solute from solid, liquid or gaseous sample by using a suitable solvent is reliant upon the relationship described by Nemst s distribution or partition law. The traditional distribution or partition coefficient is defined as Kn = Cs/C, where Cs is the concentration of the solute in the solid and Ci is the species concentration in the liquid. A small Kd value stands for a more powerful solvent which is more likely to accumulate the target analyte. The shape of the partition isotherm can be used to deduce the behaviour of the solute in the extracting solvent. In theory, partitioning of the analyte between polymer and solvent prevents complete extraction. However, as the quantity of extracting solvent is much larger than that of the polymeric material, and the partition coefficients usually favour the solvent, in practice at equilibrium very low levels in the polymer will result. [Pg.61]

Mach-Zehnder interferometers allow the monitoring of gas concentrations and even the determination of analytes in liquids. Normally one of the measurement arms is covered with a thin polymer film into which the analyte can sorp. According to Nemst s distribution law, we have an equilibrium between the mobile and the stationary phase if a gas or a liquid pass the measurement window . Figure 12 shows a variety of results. [Pg.227]

As Skinner has pointed out [7], there is no evidence for the existence of BFyH20 in the gas phase at ordinary temperatures, and the solid monohydrate of BF3 owes its stability to the lattice energy thus D(BF3 - OH2) must be very small. The calculation of AH2 shows that even if BFyH20 could exist in solution as isolated molecules at low temperatures, reaction (3) would not take place. We conclude therefore that proton transfer to the complex anion cannot occur in this system and that there is probably no true termination except by impurities. The only termination reactions which have been definitely established in cationic polymerisations have been described before [2, 8], and cannot at present be discussed profitably in terms of their energetics. It should be noted, however, that in systems such as styrene-S C/4 the smaller proton affinity of the dead (unsaturated or cyclised) polymer, coupled, with the greater size of the anion and smaller size of the cation may make AHX much less positive so that reaction (2) may then be possible because AG° 0. This would mean that the equilibrium between initiation and termination is in an intermediate position. [Pg.181]

All reactions involved in polymer chain growth are equilibrium reactions and consequently, their reverse reactions lead to chain degradation. The equilibrium constants are rather small and thus, the low-molecular-weight by-products have to be removed efficiently to shift the reaction to the product side. In industrial reactors, the overall esterification, as well as the polycondensation rate, is controlled by mass transport. Limitations of the latter arise mainly from the low solubility of TPA in EG, the diffusion of EG and water in the molten polymer and the mass transfer at the phase boundary between molten polymer and the gas phase. The importance of diffusion for the overall reaction rate has been demonstrated in experiments with thin polymer films [10]. [Pg.39]

Figure 6 shows the phase diagrams plotting temperature T vs c for PHIC-toluene systems with different Mw or N [64], indicating c( and cA to be insensitive to T, as is generally the case with lyotropic polymer liquid crystal systems. This feature reflects that the phase equilibrium behavior in such systems is mainly governed by the hard-core repulsion of the polymers. The weak temperature dependence in Fig. 6 may be associated with the temperature variation of chain stiffness [64]. We assume in the following theoretical treatment that liquid crystalline polymer chains in solution interact only by hardcore repulsion. The isotropic-liquid crystal phase equilibrium in such a solution is then the balance between S and Sor, as explained in the last part of Sect. 2.2. [Pg.106]

The pronounced discrepancy between the measured dynamic 15 °C-elution curve and its extrapolated reversible-thermodynamic part, shown in Fig. 7, represents a direct proof of the inadequacy of the reversible Eq. (3) in the dynamic region of the column (PDC-effect). Moreover, the experiment shows immediately that the polymer of the mobile phase has to dissolve in the gel layer within the transport zone to a considerably higher extent than is allowed by the partition function (4) in a reversible-thermodynamic equilibrium between the gel and the sol at the same column temperature. As a consequence, a steady state, i.e. a flow-equilibrium, must be assumed in the system sol/gel within the considered transport zone, governing the polymer trans-... [Pg.17]

The final colligative property, osmotic pressure,24-29 is different from the others and is illustrated in Figure 2.2. In the case of vapor-pressure lowering and boiling-point elevation, a natural boundary separates the liquid and gas phases that are in equilibrium. A similar boundary exists between the solid and liquid phases in equilibrium with each other in melting-point-depression measurements. However, to establish a similar equilibrium between a solution and the pure solvent requires their separation by a semi-permeable membrane, as illustrated in the figure. Such membranes, typically cellulosic, permit transport of solvent but not solute. Furthermore, the flow of solvent is from the solvent compartment into the solution compartment. The simplest explanation of this is the increased entropy or disorder that accompanies the mixing of the transported solvent molecules with the polymer on the solution side of the membrane. Flow of liquid up the capillary on the left causes the solution to be at a hydrostatic pressure... [Pg.11]


See other pages where Phase equilibrium between polymer is mentioned: [Pg.498]    [Pg.24]    [Pg.92]    [Pg.109]    [Pg.2]    [Pg.183]    [Pg.139]    [Pg.89]    [Pg.659]    [Pg.529]    [Pg.134]    [Pg.340]    [Pg.568]    [Pg.586]    [Pg.19]    [Pg.246]    [Pg.156]    [Pg.194]    [Pg.104]    [Pg.238]    [Pg.134]    [Pg.53]    [Pg.185]    [Pg.230]    [Pg.104]    [Pg.77]    [Pg.278]    [Pg.320]    [Pg.398]    [Pg.99]   


SEARCH



Equilibrium between phases

Polymer phase equilibria

Polymers between

Polymers equilibrium

© 2024 chempedia.info