Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phase diagram binary solutions

Binary Alloys. Aluminum-rich binary phase diagrams show tliree types of reaction between liquid alloy, aluminum solid solution, and otlier phases eutectic, peritectic, and monotectic. Table 16 gives representative data for reactions in tlie systems Al—Al. Diagrams are shown in Figures 10—19. Compilations of phase diagrams may be found in reference 41. [Pg.107]

Carbon disulfide is completely miscible with many hydrocarbons, alcohols, and chlorinated hydrocarbons (9,13). Phosphoms (14) and sulfur are very soluble in carbon disulfide. Sulfur reaches a maximum solubiUty of 63% S at the 60°C atmospheric boiling point of the solution (15). SolubiUty data for carbon disulfide in Hquid sulfur at a CS2 partial pressure of 101 kPa (1 atm) and a phase diagram for the sulfur—carbon disulfide system have been published (16). Vapor—Hquid equiHbrium and freezing point data ate available for several binary mixtures containing carbon disulfide (9). [Pg.27]

The distribution-coefficient concept is commonly applied to fractional solidification of eutectic systems in the ultrapure portion of the phase diagram. If the quantity of impurity entrapped in the solid phase for whatever reason is proportional to that contained in the melt, then assumption of a constant k is valid. It should be noted that the theoretical yield of a component exhibiting binary eutectic behavior is fixed by the feed composition and position of the eutectic. Also, in contrast to the case of a solid solution, only one component can be obtained in a pure form. [Pg.1990]

Colloidal crystals . At the end of Section 2.1.4, there is a brief account of regular, crystal-like structures formed spontaneously by two differently sized populations of hard (polymeric) spheres, typically near 0.5 nm in diameter, depositing out of a colloidal solution. Binary superlattices of composition AB2 and ABn are found. Experiment has allowed phase diagrams to be constructed, showing the crystal structures formed for a fixed radius ratio of the two populations but for variable volume fractions in solution of the two populations, and a computer simulation (Eldridge et al. 1995) has been used to examine how nearly theory and experiment match up. The agreement is not bad, but there are some unexpected differences from which lessons were learned. [Pg.475]

The binary system lead-thallium shows an unusual type of phase diagram. Fig. 1, taken from Hansen (1936), represents in the main the results obtained by Kumakow Pushin (1907) and by Lewkonja (1907). The liquidus curve in the wide solid-solution region has a maximum at about 63 atomic percent thallium. The nature of this maximum has not previously been made clear. [Pg.591]

Critical assessment of phase-diagram data employing the thermodynamics of the phase equilibria in the form of phase-diagram modeling provides consistent thermochemical data (including also the liquid solution) for binary metal-boron systems such as V—B Cr—B, Mn—B, Fe —B, Co—B, Ni—Mo—B and Nb—B, W—B, A1 — B Despite these efforts, reinvestigation of binary systems is... [Pg.129]

When two metals A and B are melted together and the liquid mixture is then slowly cooled, different equilibrium phases appear as a function of composition and temperature. These equilibrium phases are summarized in a condensed phase diagram. The solid region of a binary phase diagram usually contains one or more intermediate phases, in addition to terminal solid solutions. In solid solutions, the solute atoms may occupy random substitution positions in the host lattice, preserving the crystal structure of the host. Interstitial soHd solutions also exist wherein the significantly smaller atoms occupy interstitial sites... [Pg.157]

A brief discussion of sohd-liquid phase equihbrium is presented prior to discussing specific crystalhzation methods. Figures 20-1 and 20-2 illustrate the phase diagrams for binary sohd-solution and eutectic systems, respectively. In the case of binary solid-solution systems, illustrated in Fig. 20-1, the liquid and solid phases contain equilibrium quantities of both components in a manner similar to vapor-hquid phase behavior. This type of behavior causes separation difficulties since multiple stages are required. In principle, however, high purity... [Pg.3]

Figure 4.10 (a)-(i) Phase diagrams of the hypothetical binary system A-B consisting of regular solid and liquid solution phases for selected combinations of Q q and Qs°l. The entropy of fusion of compounds A and B is 10 J K 1 mol-l while the melting temperatures are 800 and 1000 K. [Pg.101]

Eutectic point (Tc) A single point on a temperature concentration phase (or state) diagram for a binary solution (e.g., water and sugars or salts) where the solution can exist in equilibrium with both crystalline solute and crystalline solvent. Under equilibrium conditions, cooling at Te results in simultaneous crystallization of solvent and solute in constant proportion and at constant temperature until maximum solidification has occurred (based on Fennema, 1996). [Pg.89]

Figure 2.9. Examples of melting phase diagrams of binary systems showing complete mutual solubility in the liquid state and, at high temperature only, in the solid state. By lowering the temperature, however, the continuous solid solution decomposes into two phases. In (d) a schematic representation of NiAu or PtAu type diagrams is shown as formed by two generic components A and B. Figure 2.9. Examples of melting phase diagrams of binary systems showing complete mutual solubility in the liquid state and, at high temperature only, in the solid state. By lowering the temperature, however, the continuous solid solution decomposes into two phases. In (d) a schematic representation of NiAu or PtAu type diagrams is shown as formed by two generic components A and B.

See other pages where Phase diagram binary solutions is mentioned: [Pg.58]    [Pg.286]    [Pg.72]    [Pg.624]    [Pg.2377]    [Pg.382]    [Pg.383]    [Pg.329]    [Pg.234]    [Pg.370]    [Pg.151]    [Pg.246]    [Pg.89]    [Pg.483]    [Pg.485]    [Pg.495]    [Pg.301]    [Pg.1056]    [Pg.1132]    [Pg.1274]    [Pg.365]    [Pg.644]    [Pg.421]    [Pg.425]    [Pg.47]    [Pg.547]    [Pg.554]    [Pg.560]    [Pg.540]    [Pg.311]    [Pg.24]    [Pg.95]    [Pg.99]    [Pg.111]    [Pg.18]    [Pg.37]    [Pg.71]   
See also in sourсe #XX -- [ Pg.233 ]

See also in sourсe #XX -- [ Pg.233 ]




SEARCH



Binary phase diagram

Binary solution

Diagrams binary

Phase diagrams eutectic binary solutions

Simple Binary Phase Diagram without Intermediate Compound or Solid Solution

© 2024 chempedia.info