Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phase characteristic features

The three general states of monolayers are illustrated in the pressure-area isotherm in Fig. IV-16. A low-pressure gas phase, G, condenses to a liquid phase termed the /i uid-expanded (LE or L ) phase by Adam [183] and Harkins [9]. One or more of several more dense, liquid-condensed phase (LC) exist at higher pressures and lower temperatures. A solid phase (S) exists at high pressures and densities. We briefly describe these phases and their characteristic features and transitions several useful articles provide a more detailed description [184-187]. [Pg.131]

The characteristic feature of valence bond theory is that it pictures a covalent bond between two atoms in terms of an m phase overlap of a half filled orbital of one atom with a half filled orbital of the other illustrated for the case of H2 m Figure 2 3 Two hydrogen atoms each containing an electron m a Is orbital combine so that their orbitals overlap to give a new orbital associated with both of them In phase orbital overlap (con structive interference) increases the probability of finding an electron m the region between the two nuclei where it feels the attractive force of both of them... [Pg.60]

Concentration-time curves. Much of Sections 3.1 and 3.2 was devoted to mathematical techniques for describing or simulating concentration as a function of time. Experimental concentration-time curves for reactants, intermediates, and products can be compared with computed curves for reasonable kinetic schemes. Absolute concentrations are most useful, but even instrument responses (such as absorbances) are very helpful. One hopes to identify characteristic features such as the formation and decay of intermediates, approach to an equilibrium state, induction periods, an autocatalytic growth phase, or simple kinetic behavior of certain phases of the reaction. Recall, for example, that for a series first-order reaction scheme, the loss of the initial reactant is simple first-order. Approximations to simple behavior may suggest justifiable mathematical assumptions that can simplify the quantitative description. [Pg.120]

The characteristic feature of solid—solid reactions which controls, to some extent, the methods which can be applied to the investigation of their kinetics, is that the continuation of product formation requires the transportation of one or both reactants to a zone of interaction, perhaps through a coherent barrier layer of the product phase or as a monomolec-ular layer across surfaces. Since diffusion at phase boundaries may occur at temperatures appreciably below those required for bulk diffusion, the initial step in product formation may be rapidly completed on the attainment of reaction temperature. In such systems, there is no initial delay during nucleation and the initial processes, perhaps involving monomolec-ular films, are not readily identified. The subsequent growth of the product phase, the main reaction, is thereafter controlled by the diffusion of one or more species through the barrier layer. Microscopic observation is of little value where the phases present cannot be unambiguously identified and X-ray diffraction techniques are more fruitful. More recently, the considerable potential of electron microprobe analyses has been developed and exploited. [Pg.37]

Determination of the influence of crystal structure and reactant environment on deammination and dehydration processes is complicated by the several solid phase transformations that are a characteristic feature of many ammonium salts. Sublimation and/or melting may also occur. Deammination and dehydration steps are generally reversible. At high temperatures, however, particularly in the presence of a residual oxide... [Pg.195]

An important characteristic feature, common to all these reactions, is the formation of a single product (barrier) phase. In addition, the lattice structures of both reactants and products are relatively simple and information on appropriate physical and chemical properties of these substances is available. Complex iodide formation is of particular interest because of the exceptionally large cation mobilities in these phases. Experimental methods have been described in Sect. 1 and Chap. 2. [Pg.267]

The concepts of interface rheology are derived from the rheology of three-dimensional phases. Characteristic for the interface rheology is the coupling of the motions of an interface with the flow processes in the bulk close to the interface. Thus, in interface rheology the shear and dilatational stresses of the interface are in equilibrium with the corresponding shear stress in the bulk. An important feature is the compressibility of the adsorption layer of an interface in contrast, the flow elements of the bulk are incompressible. As a result, compression or dilatation of the adsorption layer of a soluble surfactant is associated with desorption and adsorption processes by which the interface tends to reinstate the adsorption equilibrium with the bulk phase. [Pg.184]

As illustrated by Figure 11-38. phase diagrams have many characteristic features ... [Pg.807]

Figure 9.17. Mars-Van Krevelen mechanism for the oxidation of CO on a metal oxide surface. A characteristic feature is that lattice oxygen is used to oxidize the CO, leaving a defect that is replenished in a separate step by oxygen from the gas phase. Figure 9.17. Mars-Van Krevelen mechanism for the oxidation of CO on a metal oxide surface. A characteristic feature is that lattice oxygen is used to oxidize the CO, leaving a defect that is replenished in a separate step by oxygen from the gas phase.
An electric potential drop across the boundary between two dissimiliar phases as well as at their surfaces exposed to a neutral gas phase is the most characteristic feature of every interface and surface electrified due to ion separation and dipole orientation. This charge separation is usually described as an ionic double layer. [Pg.14]

The characteristic features of phase equilibria in polymer-solvent mixtures will be examined in the present section, the discussion being confined to systems having both phases completely liquid. Equilibria involving a polymer-rich phase in which the polymer is semicrystalline will be the subject of the following section. [Pg.542]

These devices have special function, namely to irradiate the liquid phase with light to induce a photoreaction or photoinduced reaction. Hence the characteristic feature is a transparent section within the reactor, often in the visible or commonly in the UV spectral region. The devices may have integrated photo energy sources or on-line analysis units. Otherwise, this is performed by external instruments. [Pg.416]

The presence of an electrical potential drop, i.e., interfacial potential, across the boundary between two dissimilar phases, as well as at their surfaces exposed to a neutral gas phase, is the most characteristic feature of every interface and surface electrified due to the ion separation and dipole orientation. This charge separation is usually described as the formation of the ionic and dipolar double layers. The main interfacial potential is the Galvani potential (termed also by Trasatti the operative potential), which is the difference of inner potentials (p and of both phases. It is a function only of the chemical... [Pg.18]

Before discussing column preparation procedures a few comments on nomenclature are in order. Open tubular columns are also widely known as capillary columns. The characteristic feature of these columns is their openness, which provides an unrestricted gas path through the column. Thus open tubular colximn rather than capillary column is a more apt description. However, both descriptions appear frequently in the literature and can be emsidered interchangeable. The type of columns discussed so far are also known as wall-coated open tubular columns (WCOT). Here the liquid phase is deposited directly onto the column wall without the inclusion of any additive that might be considered as... [Pg.590]

A characteristic feature of ESMS is the detection of multiply charged analytes. Macromolecules, such as proteins have multiple sites where protonation or deprotonation (the two most common charge inducing mechanisms in electrospray—other routes to charge induction include, ionization through adduct formation, through gas-phase reactions, and through electrochemical oxidation or reduction) occur. These are desorbed effectively in ESMS and... [Pg.236]

In the previous sections, we described the overall features of the heat-induced phase transition of neutral polymers in water and placed the phenomenon within the context of the general understanding of the temperature dependence of polymer solutions. We emphasised one of the characteristic features of thermally responsive polymers in water, namely their increased hydropho-bicity at elevated temperature, which can, in turn, cause coagulation and macroscopic phase separation. We noted also, that in order to circumvent this macroscopic event, polymer chemists have devised a number of routes to enhance the colloidal stability of neutral globules at elevated temperature by adjusting the properties of the particle-water interface. [Pg.28]

Sun, S., Tsubaki, N., and Fujimoto, K. 2000. Characteristic feature of Co/Si02 catalysts for slurry phase Fischer-Tropsch synthesis. J. Chem. Eng. Jpn. 33 232-38. [Pg.118]

Table 29.1, illustrates the characteristic features of some typical liquid-phases used in GC ... [Pg.437]

A significant review of several aspects of the phase diagram computation (phase diagram calculations in teaching, research and industry) has been published by Chang (2006). The relationship between the characteristic features of a phase diagram and the relative thermodynamic stabilities of the phases involved has been there underlined and exemplified. Representative examples of binary, ternary and high-order alloy systems have been presented. Moreover a number of applications have... [Pg.70]

In this chapter, general aspects and structural properties of crystalline solid phases are described, and a short introduction is given to modulated and quasicrystal structures (quasi-periodic crystals). Elements of structure systematics with the description of a number of structure types are presented in the subsequent Chapter 7. Finally, both in this chapter and in Chapter 6, dedicated to preparation techniques, characteristic features of typical metastable phases are considered with attention to amorphous and glassy alloys. [Pg.81]

Some details and questions about these points will be discussed in the next paragraphs. These will then be used for a description of selected common phases and a presentation of a few characteristic features of intermetallic crystal chemistry. [Pg.88]


See other pages where Phase characteristic features is mentioned: [Pg.2269]    [Pg.203]    [Pg.230]    [Pg.308]    [Pg.191]    [Pg.79]    [Pg.331]    [Pg.449]    [Pg.238]    [Pg.183]    [Pg.240]    [Pg.247]    [Pg.348]    [Pg.41]    [Pg.46]    [Pg.110]    [Pg.217]    [Pg.247]    [Pg.90]    [Pg.201]    [Pg.224]    [Pg.243]    [Pg.474]    [Pg.96]    [Pg.157]    [Pg.378]    [Pg.161]    [Pg.29]    [Pg.46]    [Pg.15]   
See also in sourсe #XX -- [ Pg.92 ]




SEARCH



Phase characteristic

© 2024 chempedia.info