Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elimination, pharmacokinetics

Pharmacokinetic Elimination Models 219 10.9.5 Special Cases of the One-Compartment... [Pg.200]

The pharmacokinetics (elimination rate constant, half-life, AUC) of a single 400-mg dose of erythromycin ethyl succinate were not significantly altered by a single 1-g dose of sucralfate in 6 healthy subjects. It was concluded that the therapeutic effects of erythromycin are unlikely to be affected by concurrent use. ... [Pg.318]

Medroxyprog esteroneAcetate. Accurate pharmacokinetic and metaboHsm studies on MPA have been difficult because the radioimmunoassays employed caimot differentiate between MPA and its metaboHtes (346). Comparison of MPA plasma levels assayed by hplc and radioimmunoassay show that radioimmunoassay may overestimate intact MPA concentrations by about fivefold (347). However, values of the mean elimination half-life of MPA were similar, being 33.8 and 39.7 h when measured by hplc and radioimmunoassay, respectively (347). Approximately 94% of MPA in the blood is bound to albumin (348). When taken orally, MPA is rapidly absorbed with Htde or no first-pass metaboHsm (13). Peak semm levels ate reached after 3 h. Steady state occurs after three days of daily adininistration (349). The pharmacokinetics of MPA when adininistered in a depot formulation have been described (350). [Pg.225]

Pharmacokinetics is the study of how the body affects an adiriinistered dmg. It measures the kinetic relationships between the absorption, distribution, metaboHsm, and excretion of a dmg. To be a safe and effective dmg product, the dmg must reach the desired site of therapeutic activity and exist there for the desired time period in the concentration needed to achieve the desired effect. Too Htde of the dmg at such sites yields no positive effect ( MTC) leads to toxicity (see Fig. 1). For intravenous adininistration there is no absorption factor. Total body elimination includes both metabohc processing and excretion. [Pg.228]

In cases of all but intravenous adininistration, dosage forms must make the active moiety available for absorption, ie, for dmg release. This influences the bioavailabiUty and the dmg s pharmacokinetic profile. Ideally the dmg is made available to the blood for distribution and elimination at a rate equal to those processes. Through technological developments dmg product design can achieve release, absorption, and elimination rates resulting in durations of activity of 8—12 hours, ie, prolonged action/controlled release dmg products (21,22). Such products improve the compliance rate of dmg usage by patients. [Pg.228]

Elestolol sulfate is a nonselective, ultrashort acting P-adrenoceptor blocker. It has no ISA and produces weak inhibition of the fast sodium channel. The dmg is under clinical investigation for supraventricular tachyarrhythmias, unstable angina, and acute MI. In humans, flestolol has hemodynamics and electrophysiologic effects similar to those of other P-adrenoceptor blockers. The pharmacokinetics of flestolol are similar to those of esmolol. It is 50 times more potent than esmolol and the elimination half-life is 7.2 min. Recovery from P-adrenoceptor blockade is 30—45 min after stopping iv infusions. The dmg is hydrolyzed by tissue esterases and no active metabohtes of flestolol have been identified (41). [Pg.119]

Bopindolol is a long-acting, nonselective P-adrenoceptor blocker. It has mild membrane stabilizing activity and ISA. In vivo, the compound is hydrolyzed to its active metabohte. Because of this prodmg feature the onset of action is slower than other available P-adrenoceptor blockers. Preliminary pharmacokinetic studies indicate that the compound is weU absorbed, is 70% bioavailable, and peak plasma levels are achieved in about 2 h. Whereas its elimination half-life is 4—8 h, P-adrenoceptor blocking action (- 40%) is stiU apparent after 48 h. The dmg is being studied in hypertension, angina, and arrhythmias (43). [Pg.119]

The realization of sensitive bioanalytical methods for measuring dmg and metaboUte concentrations in plasma and other biological fluids (see Automatic INSTRUMENTATION BlosENSORs) and the development of biocompatible polymers that can be tailor made with a wide range of predictable physical properties (see Prosthetic and biomedical devices) have revolutionized the development of pharmaceuticals (qv). Such bioanalytical techniques permit the characterization of pharmacokinetics, ie, the fate of a dmg in the plasma and body as a function of time. The pharmacokinetics of a dmg encompass absorption from the physiological site, distribution to the various compartments of the body, metaboHsm (if any), and excretion from the body (ADME). Clearance is the rate of removal of a dmg from the body and is the sum of all rates of clearance including metaboHsm, elimination, and excretion. [Pg.224]

The separation of enantiomers is a very important topic to the pharmaceutical industry. It is well recognized that the biological activities and bioavailabilities of enantiomers often differ [1]. To further complicate matters, the pharmacokinetic profile of the racemate is often not just the sum of the profiles of the individual enantiomers. In many cases, one enantiomer has the desired pharmacological activity, whereas the other enantiomer may be responsible for undesirable side-effects. What often gets lost however is the fact that, in some cases, one enantiomer may be inert and, in many cases, both enantiomers may have therapeutic value, though not for the same disease state. It is also possible for one enantiomer to mediate the harmful effects of the other enantiomer. For instance, in the case of indacrinone, one enantiomer is a diuretic but causes uric acid retention, whereas the other enantiomer causes uric acid elimination. Thus, administration of a mixture of enantiomers, although not necessarily racemic, may have therapeutic value. [Pg.286]

The applicant should provide justification for using the racemate. Where the interconversion of the enantiomers in vivo is more rapid than the distribution and elimination rates, then use of the racemate is justified. In cases where there is no such interconversion or it is slow, then differential pharmacological effects and fate of the enantiomers may be apparent. Use of the racemate may also be justified if any toxicity is associated with the pharmacological action and the therapeutic index is the same for both isomers. For preclinical assessment, pharmacodynamic, pharmacokinetic (using enantiospecific analytical methods) and appropriate toxicological studies of the individual enantiomers and the racemate will be needed. Clinical studies on human pharmacodynamics and tolerance, human pharmacokinetics and pharma-cotherapeutics will be required for the racemate and for the enantiomers as appropriate. [Pg.326]

This generally describes the process of drug absorption into the body, distribution throughout the body, metabolism by degrad a tive and metabolizing enzymes in the body, and finally elimination from the body. It is useful to consider each of these steps because together they summarize pharmacokinetics. [Pg.163]

FIGURE 8.21 Schematic representation of the pharmacokinetic processes involved in drag absorption, distribution, and elimination. [Pg.165]

Lack of favorable ADME properties (absorption, distribution, metabolism, elimination) can preclude therapeutic use of an otherwise active molecule. The clinical pharmacokinetic parameters of clearance, half-life, volume of distribution, and bioavailability can be used to characterize ADME properties. [Pg.172]

The pharmacokinetics of azacitidine shows that it is rapidly absorbed after s.c. administration with the peak plasma concentration occurring after 0.5 h. The bioavailability of s.c. azacitidine relative to i.v. azacitidine is approximately 89%. Urinary excretion is the primary route of elimination of azacitidine and its metabolites. The mean elimination half-lives are about 4 h, regardless of i.v. or s.c. administration. [Pg.152]

Pharmacokinetics. Figure 1 Main pharmacokinetic processes and parameters Half-life (T1/2), volume (Vd), elimination rate constant (Ke), and clearance (Cl). [Pg.955]

Half-life /Elimination Half-life Pharmacokinetics... [Pg.1177]

Many authors reported poor elimination of antiepileptic drug carbamazepine [6,13,17,49, 54]. Pharmacokinetic data indicate that only 1-2% of carbamazepine is excreted unmetabolized. However, glucuronide conjugates of carbamazepine can presumably be cleaved in the sewage, and thus increase its environmental concentrations [51]. This is confirmed by its high ubiquity in the enviromnent at concentration levels of several hundred nanograms per liter in different surface waters. Due to its recalcitrant nature, it can be used as anthropogeiuc marker for the contamination of aquatic environment. [Pg.207]

No data were located concerning whether pharmacokinetics of endosulfan in children are different from adults. There are no adequate data to determine whether endosulfan or its metabolites can cross the placenta. Studies in animals addressing these issues would provide valuable information. Although endosulfan has been detected in human milk (Lutter et al. 1998), studies in animals showed very little accumulation of endosulfan residues in breast milk (Gorbach et al. 1968 Indraningsih et al. 1993), which is consistent with the rapid elimination of endosulfan from tissues and subsequent excretion via feces and urine. There are no PBPK models for endosulfan in either adults or children. There is no information to evaluate whether absorption, distribution, metabolism, or excretion of endosulfan in children is different than in adults. [Pg.200]

The metabolic and pharmacokinetic profile of sucralose (this is a novel intense sweetener with a potency about 600 times that of sucrose) in human volunteers was studied by Roberts and coworkers [82]. Part of this study was realized using PLC in the following chromatographic system in which the stationary phase was silica gel and the mobile phase was ethyl acetate-methanol-water-concentrated ammonia (60 20 10 2, v/v). Separated substances were scraped off separately, suspended in methanol, and analyzed by filtration, scintillation counting, or enzymatic assay. It was shown that the characteristics of sucralose include poor absorption, rapid elimination, limited conjugative metabolism of the fraction absorbed, and lack of bio-accumulative potential. [Pg.223]

The same assumptions apply to CoMFA as to ordinary Hansch analysis. These are additivity of effects and the availability of structurally similar (congeneric) molecules. The method does not account for pharmacokinetic effects, such as distribution, elimination, transport and metabolization. A prospective drug may appear to bind well to the receptor or enzyme, but may not reach the target site due to undesirable pharmacokinetic properties [8]. [Pg.411]

In practice, one will seek to obtain an estimate of the elimination constant kp and the plasma volume of distribution Vp by means of a single intravenous injection. These pharmacokinetic parameters are then used in the determination of the required dose D in the reservoir and the input rate constant k (i.e. the drip rate or the pump flow) in order to obtain an optimal steady state plasma concentration... [Pg.472]

Usually, one has obtained an estimate for the elimination constant and the distribution volume Vp from a single intravenous injection. These pharmacokinetic parameters, together with the interval between administrations 0 and the single-dose D, then allow us to compute the steady-state peak and trough values. The criterion for an optimal dose regimen depends on the minimum therapeutic concentration (which must be exceeded by and on the maximum safe... [Pg.475]


See other pages where Elimination, pharmacokinetics is mentioned: [Pg.101]    [Pg.218]    [Pg.269]    [Pg.101]    [Pg.218]    [Pg.269]    [Pg.198]    [Pg.267]    [Pg.481]    [Pg.516]    [Pg.537]    [Pg.31]    [Pg.63]    [Pg.118]    [Pg.329]    [Pg.165]    [Pg.167]    [Pg.169]    [Pg.6]    [Pg.646]    [Pg.1137]    [Pg.233]    [Pg.247]    [Pg.44]    [Pg.175]    [Pg.325]    [Pg.222]    [Pg.99]    [Pg.332]    [Pg.752]    [Pg.803]   
See also in sourсe #XX -- [ Pg.107 ]

See also in sourсe #XX -- [ Pg.9 ]

See also in sourсe #XX -- [ Pg.159 , Pg.160 , Pg.161 , Pg.162 , Pg.169 , Pg.170 , Pg.177 , Pg.178 , Pg.234 ]

See also in sourсe #XX -- [ Pg.120 ]

See also in sourсe #XX -- [ Pg.29 , Pg.32 , Pg.34 ]

See also in sourсe #XX -- [ Pg.4 , Pg.5 ]

See also in sourсe #XX -- [ Pg.338 ]

See also in sourсe #XX -- [ Pg.254 , Pg.255 , Pg.256 ]




SEARCH



Pharmacokinetic models, biologically based elimination

Pharmacokinetics II Drug Elimination

Pharmacokinetics drug elimination

Pharmacokinetics elimination half-life

Pharmacokinetics elimination rate constant

Pharmacokinetics elimination rate/route

Pharmacokinetics first-order elimination kinetics

Pharmacokinetics metabolism and elimination

Pharmacokinetics metabolism, elimination processes

Pharmacokinetics renal elimination

Plasma elimination, pharmacokinetic

© 2024 chempedia.info