Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Petrochemicals ethylbenzene

Benzene and para-xylene are the most sought after components from reformate and pygas, followed by ortho-xylene and meta-xylene. While there is petrochemical demand for toluene and ethylbenzene, the consumption of these carmot be discussed in the same way as the other four. Toluene is used in such a large quantity in gasoline blending that its demand as a petrochemical pales in comparison. Fthylbenzene from reformate and pygas is typically dealkylated to make benzene or isomerized to make xylenes. On-purpose production of petrochemical ethylbenzene (via ethylene alkylation of benzene) is primarily for use as an intermediate in the production of another petrochemical, styrene monomer. Ethylbenzene plants are typically built close coupled with styrene plants. [Pg.230]

It is convenient to divide the petrochemical industry into two general sectors (/) olefins and (2) aromatics and their respective derivatives. Olefins ate straight- or branched-chain unsaturated hydrocarbons, the most important being ethylene (qv), [74-85-1] propjiene (qv) [115-07-17, and butadiene (qv) [106-99-0J. Aromatics are cycHc unsaturated hydrocarbons, the most important being benzene (qv) [71-43-2] toluene (qv) [108-88-3] p- s.y en.e [106-42-3] and (9-xylene [95-47-5] (see Xylenes and ethylbenzene) There are two other large-volume petrochemicals that do not fall easily into either of these two categories ammonia (qv) [7664-41-7] and methanol (qv) [67-56-1]. These two products ate derived primarily from methane [74-82-8] (natural gas) (see Hydrocarbons, c -c ). [Pg.171]

Most of the industrially important alkyl aromatics used for petrochemical intermediates are produced by alkylating benzene [71-43-2] with monoolefins. The most important monoolefins for the production of ethylbenzene, cumene, and detergent alkylate are ethylene, propylene, and olefins with 10—18 carbons, respectively. This section focuses primarily on these alkylation technologies. [Pg.47]

Benzene, toluene, xylenes (BTX), and ethylbenzene are the aromatic hydrocarbons with a widespread use as petrochemicals. They are important precursors for many commercial chemicals and polymers such as... [Pg.37]

This process is designed to hydrodealkylate methylbenzenes, ethylbenzene and Cg aromatics to benzene. The petrochemical demand for benzene is greater than for toluene and xylenes. After separating benzene... [Pg.81]

Oxidation of organic compounds by dioxygen is a phenomenon of exceptional importance in nature, technology, and life. The liquid-phase oxidation of hydrocarbons forms the basis of several efficient technological synthetic processes such as the production of phenol via cumene oxidation, cyclohexanone from cyclohexane, styrene oxide from ethylbenzene, etc. The intensive development of oxidative petrochemical processes was observed in 1950-1970. Free radicals participate in the oxidation of organic compounds. Oxidation occurs very often as a chain reaction. Hydroperoxides are formed as intermediates and accelerate oxidation. The chemistry of the liquid-phase oxidation of organic compounds is closely interwoven with free radical chemistry, chemistry of peroxides, kinetics of chain reactions, and polymer chemistry. [Pg.20]

Xyloflning [Xylol refining] A process for isomerizing a petrochemical feedstock containing ethylbenzene and xylenes. The xylenes are mostly converted to the equilibrium mixture of xylenes the ethylbenzene is dealkylated to benzene and ethylene. This is a catalytic, vapor-phase process, operated at approximately 360°C. The catalyst (Encilite-1) is a ZSM-5-type zeolite in which some of the aluminum has been replaced by iron. The catalyst was developed in India in 1981, jointly by the National Chemical Laboratory and Associated Cement Companies. The process was piloted by Indian Petrochemicals Corporation in 1985 and commercialized by that company at Baroda in 1991. [Pg.295]

Since zeolite catalysts are successfully introduced in the refining and petrochemical industries, it is not surprising that most of the recent advances concern incremental improvements of existing processes with the development of new generations of catalysts (e.g., dewaxing, ethylbenzene and cumene synthesis). The number of newer applications is much more limited, for example, direct synthesis of phenol from benzene and aromatization of short-chain alkanes, etc. However, both the improvement and development of processes contribute significantly to environmental advances. [Pg.248]

The chemical uses for ethylene prior to World War II were limited, for the most part, to ethylene glycol and ethyl alcohol. After the war, the demand for styrene and polyethylene took off, stimulating ethylene production and olefin plant construction. Todays list of chemical applications for ethylene reads like the WTiat s What of petrochemicals polyethylene, ethylbenzene (a precursor to styrene), ethylene dichloride, vinyl chloride, ethylene oxide, ethylene glycol, ethyl alcohol, vinyl acetate, alpha olefins, and linear alcohols are some of the more commercial derivatives of ethylene. The consumer products derived from these chemicals are found everywhere, from soap to construction materials to plastic products to synthetic motor oils. [Pg.82]

Alkylation, In petrochemicals, any reaction involving the thermal or catalytic addition of an olefin to a branch-chain hydrocarbon or aromatic hydrocarbon. The most notable example in petrochemicals is the addition of ethylene or propylene to benzene to produce ethylbenzene or isopropyl benzene (cumene). Other examples include the production of detergent alkylates. [Pg.389]

Poro-xylene is an industrially important petrochemical. It is the precursor chemical for polyester and polyethylene terephthalate. It usually is found in mixtures containing all three isomers of xylene (ortho-, meta-, para-) as well as ethylbenzene. The isomers are very difficult to separate from each other by conventional distillation because the boiling points are very close. Certain zeoHtes or mol sieves can be used to preferentially adsorb one isomer from a mixture. Suitable desorbents exist which have boiling points much higher or lower than the xylene and displace the adsorbed species. The boihng point difference then allows easy recovery of the xylene isomer from the desorbent by distillation. Because of the basic electronic structure of the benzene ring, adsorptive separations can be used to separate the isomers of famihes of substituted aromatics as weU as substituted naphthalenes. [Pg.174]

Ethylbenzene is a high volume petrochemical used as the feed stock for the production of styrene via dehydrogenation. Ethylbenzene is currently made by ethylene alkylation of benzene and can be purified to 99.9%. Ethylbenzene and styrene plants are usually built in a single location. There is very little merchant sale of ethylbenzene, and styrene production is about 30x10 t/year. For selective adsorption to be economically competitive on this scale, streams with sufficiently high concentration and volume of ethylbenzene would be required. Hence, although technology has been available for ethylbenzene extraction from mixed xylenes, potential commercial opportunities are limited to niche applications. [Pg.244]

A new process for the manufacture of p-diethylbenzene developed by Indian Petrochemicals Corporation was commercialized.376 p-Diethylbenzene is produced by alkylating ethylbenzene with ethanol over a highly shape-selective, pore-size-regulated, high-silica zeolite. The catalyst exhibits a steady activity of 6-8% conversion with 97-98% selectivity. [Pg.263]

Even (hough there are few direct end-uses foe ethylene, it is probably the most important petrochemical feedstock, both in terms of quantities used and economic value. Ethylene is the feedstock for ethylene oxide, ethylbenzene, ethyl chloride, elhylene dichloride, ethyl alcohol, and polyethylene, most of which, in turn, are used to produce hundreds of other end-products. Most elhylene is produced by sleam cracking of ethane or propane. [Pg.589]

Maeiz, B., S S Clieu. C R. Venkat, and D. Mazzone EBMax Leading Edge Ethylbenzene Technology from Mobil/Badger, 1996 DeWitr Petrochemical Review, Houston, TX, Mar. 19-21, 1996. [Pg.1556]

Alkylation of benzene for the production of ethylbenzene, the raw material for making styrene and subsequently synthetic rubber, was also greatly expanded during the war because of the shortage of natural rubber. The catalyst in most of the original ethylbenzene units was aluminum chloride, but other catalysts are now preferred by many refiners. Alkylation for the production of ethylbenzene was the first large-scale alkylation process used for the production of petrochemicals. Since that time, others, such as cumene, dodecylbenzene, alkylated phenols, diisopropylbenzene, and secondary butylbenzene, have been added to the list, and others have been developed and should soon be in commercial production. [Pg.166]

Although boron trifluoride has been known for a long time as a catalyst for alkylation reactions, it did not become commercially important until larger quantities of aromatic alkylates were required by industry as raw materials for synthetic fibers, rubber, and plastics. As the petrochemical industry finds new uses for these aromatic alkylates, the use of BF3 catalyst is expected to expand greatly. Cumene, diispropylbenzene, and ethylbenzene are among the important alkylates which can be produced by this catalyst. [Pg.171]

Ethylbenzene was the first petrochemical to be produced by petroleum refiners in large quantities. It is made by the alkylation of benzene by ethylene. Aluminum chloride promoted with ethyl chloride was originally the predominant catalyst used for the reaction, but solid phosphoric acid has been used more recently and is becoming more popular. Some of the newer fluoride-type catalysts are expected to become quite popular. [Pg.175]

The first large-scale production of petrochemicals by alkylation was the production of ethylbenzene and cumene. The ethylbenzene was produced during World War II for making styrene and then synthetic rubber. The cumene was used as a high-octane additive for aviation gasoline. [Pg.182]

Commercial polymerization was once used only for converting the olefins from cracked gases into motor fuel. However, it is rapidly becoming very important in the production of such petrochemicals as heptene, propylene dimer, trimer, tetramer and pentamer and the alkylated aromatics such as ethylbenzene, isopropylbenzene, cymene, and butyl-benzenes. This list may be expected to grow as new uses are found for the heavier olefins. [Pg.238]

Fig. 10.13. Integrated plant for manufacture of ethylbenzene and styrene. (Reproduced from Hydrocarbons Processing, Petrochemical Handbook, p. 169, 1985 November. Copyright Gulf Publishing Co. and used by permission of the copyright owner.)... Fig. 10.13. Integrated plant for manufacture of ethylbenzene and styrene. (Reproduced from Hydrocarbons Processing, Petrochemical Handbook, p. 169, 1985 November. Copyright Gulf Publishing Co. and used by permission of the copyright owner.)...
Benzene is by far the most important aromatic petrochemical raw material. During 1999, some 2.8 billion gal were consumed in the United States. This ranks it close to propylene as a chemical building block. Benzene has a broad end-use pattern. Its most important uses are for ethylbenzene (styrene), 55.6 percent cumene (phenol), 22.4 percent cyclohexane... [Pg.391]

The benzene-derived petrochemicals in Figure 4.15 are intermediate feedstocks for styrenic and phenolic plastics. In the styrenics chain, ethylbenzene is dehydrogenated to styrene, to be used as polystyrene monomer or as a copolymer with acrylonitrile and butadiene. In the phenolics chain, cumene is an intermediate for making phenol. Bisphenol A is the condensation product of two moles of phenol and acetone. Phenol and Bisphenol A are used to manufacture resins and polycarbonates. Phenol and cyclohexane are the starting materials for the manufacture of nylon 6. [Pg.93]

Zeolites are integral components of petrochemical refineries that produce benzene, xylene isomers, ethylbenzene and cumene. These aromatics must be high in purity for downstream conversion to polyesters and styrenic or phenolic based plastics. Catalytic processes for producing aromatics employ zeolites for isomerization, disproportionation, transalkylation, alkylation, and dealkylation. [Pg.101]

In refining processes alkylation of isobutane with propene or butene is important in order to obtain all date which has a high octane number and a low vapour pressure. This process is not, however, directly relevant to the focus of attention of this paper and wifi therefore not be deah with in any detail It has been well reviewed recai% [36]. It is, however, worth noting that recent attempts to develop a zeolite as an ahemate to the currently used hydrofluoric or su huric acid do not appear to have been successful and it is now assumed that superacid catalysts are the most likely heterogeneous alternatives. For the petrochemical industry the alkylation of aromatics is an inportant route to the production of alkylaromatic such as ethylbenzene, xylenes, cume, alkylbenzoies, alky henol... [Pg.336]

Your supervisor at Kleen Petrochemical wishes to use a hydrodesulfurization reaction to produce ethylbenzene from a process waste stream. You have been assigned the task of designing a reactor for the hydrodesulfurization reaction. Focus reactor design. [Pg.954]

For extractive distillation, extraction and absorption processes, highly selective solvents are required. The economic importance of extraction and extractive distillation processes can be recognized from the fact that the worldwide production of the BTX aromatics (benzene, toluene, xylenes, ethylbenzene) as important primary petrochemical products for the industrial manufacturing of many chemical products... [Pg.76]

The alkylation of arenes with alkenes such as ethylene and propene are of great commercial interest. Ethylbenzene and isopropylbenzene (cumene), products of the Friedel-Crafts alkylation of benzene with ethylene and propene, respectively, are two of the most important petrochemical raw materials. Roberts and Khalaf have follow the developments made in this vast field up to the early part of this decade. This is evident from the large number of references quoted, most of which describe efforts to evaluate conditions for optimal production in the presence of various catalyst systems. [Pg.304]


See other pages where Petrochemicals ethylbenzene is mentioned: [Pg.410]    [Pg.485]    [Pg.980]    [Pg.231]    [Pg.145]    [Pg.14]    [Pg.193]    [Pg.157]    [Pg.410]    [Pg.502]    [Pg.307]    [Pg.307]    [Pg.231]    [Pg.403]    [Pg.286]    [Pg.4]    [Pg.7]    [Pg.235]    [Pg.485]   
See also in sourсe #XX -- [ Pg.29 , Pg.32 , Pg.204 , Pg.207 ]




SEARCH



Ethylbenzene

Petrochemicals

© 2024 chempedia.info