Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Perpendicular processes

The second class of atomic manipulations, the perpendicular processes, involves transfer of an adsorbate atom or molecule from the STM tip to the surface or vice versa. The tip is moved toward the surface until the adsorption potential wells on the tip and the surface coalesce, with the result that the adsorbate, which was previously bound either to the tip or the surface, may now be considered to be bound to both. For successful transfer, one of the adsorbate bonds (either with the tip or with the surface, depending on the desired direction of transfer) must be broken. The fate of the adsorbate depends on the nature of its interaction with the tip and the surface, and the materials of the tip and surface. Directional adatom transfer is possible with the apphcation of suitable junction biases. Also, thermally-activated field evaporation of positive or negative ions over the Schottky barrier formed by lowering the potential energy outside a conductor (either the surface or the tip) by the apphcation of an electric field is possible. FIectromigration, the migration of minority elements (ie, impurities, defects) through the bulk soHd under the influence of current flow, is another process by which an atom may be moved between the surface and the tip of an STM. [Pg.204]

As with most methods for studying ion-molecule kinetics and dynamics, numerous variations exist. For low-energy processes, the collision cell can be replaced with a molecular beam perpendicular to the ion beam [106]. This greatly reduces the thennal energy spread of the reactant neutral. Another approach for low energies is to use a merged beam [103]. In this system the supersonic expansion is aimed at the tluoat of the octopole, and the ions are passed tluough... [Pg.812]

As a multidimensional PES for the reaction from quantum chemical calculations is not available at present, one does not know the reason for the surprismg barrier effect in excited tran.s-stilbene. One could suspect diat tran.s-stilbene possesses already a significant amount of zwitterionic character in the confomiation at the barrier top, implying a fairly Tate barrier along the reaction path towards the twisted perpendicular structure. On the other hand, it could also be possible that die effective barrier changes with viscosity as a result of a multidimensional barrier crossing process along a curved reaction path. [Pg.857]

The first requirement is the definition of a low-dimensional space of reaction coordinates that still captures the essential dynamics of the processes we consider. Motions in the perpendicular null space should have irrelevant detail and equilibrate fast, preferably on a time scale that is separated from the time scale of the essential motions. Motions in the two spaces are separated much like is done in the Born-Oppenheimer approximation. The average influence of the fast motions on the essential degrees of freedom must be taken into account this concerns (i) correlations with positions expressed in a potential of mean force, (ii) correlations with velocities expressed in frictional terms, and iit) an uncorrelated remainder that can be modeled by stochastic terms. Of course, this scheme is the general idea behind the well-known Langevin and Brownian dynamics. [Pg.20]

Within the plane of a nonwoven material, the fibers may be either completely isotropic or there may be a preferred fiber orientation or alignment usually with respect to a machine or processing direction. In the case of thicker dry-laid nonwovens, fiber orientation may be randomized in the third dimension, ie, that dimension which is perpendicular to the plane of the fabric, by a process known as needle-punching (7). This process serves to bind the fibers in the nonwoven by mechanical interlocking. [Pg.267]

From the write and read process sketched so far, some requirements for MO media can be derived (/) a high perpendicular, uniaxial magnetic anisotropy K in order to enable readout with the polar Kerr effect (2) a magnetoopticady active layer with a sufficient figure of merit R 0- where R is the reflectivity and the Kerr angle (T) a Curie temperature between 400 and 600 K, the lower limit to enable stable domains at room temperature and the upper limit because of the limited laser power for writing. [Pg.143]

Mechanical Properties and Structural Performance. As a result of the manufacturing process, some cellular plastics have an elongated cell shape and thus exhibit anisotropy in mechanical, thermal, and expansion properties (35,36). Efforts are underway to develop manufacturing techniques that reduce such anisotropy and its effects. In general, higher strengths occur for the paraHel-to-rise direction than in the perpendicular-to-rise orientation. Properties of these materials show variabiUty due to specimen form and position in the bulk material and to uncertainty in the axes with respect to direction of foam rise. Expanded and molded bead products exhibit Httie anisotropy. [Pg.335]

Figure 6 shows a two-dimensional schematic view of an individual ion s path in the ion implantation process as it comes to rest in a material. The ion does not travel in a straight path to its final position due to elastic collisions with target atoms. The actual integrated distance traveled by the ion is called the range, R The ion s net penetration into the material, measured along the vector of the ion s incident trajectory, which is perpendicular to the... [Pg.393]

Detailed reaction dynamics not only require that reagents be simple but also that these remain isolated from random external perturbations. Theory can accommodate that condition easily. Experiments have used one of three strategies. (/) Molecules ia a gas at low pressure can be taken to be isolated for the short time between coUisions. Unimolecular reactions such as photodissociation or isomerization iaduced by photon absorption can sometimes be studied between coUisions. (2) Molecular beams can be produced so that motion is not random. Molecules have a nonzero velocity ia one direction and almost zero velocity ia perpendicular directions. Not only does this reduce coUisions, it also aUows bimolecular iateractions to be studied ia intersecting beams and iacreases the detail with which unimolecular processes that can be studied, because beams facUitate dozens of refined measurement techniques. (J) Means have been found to trap molecules, isolate them, and keep them motionless at a predetermined position ia space (11). Thus far, effort has been directed toward just manipulating the molecules, but the future is bright for exploiting the isolated molecules for kinetic and dynamic studies. [Pg.515]

A reactor is termed a radial or panel-bed reactor when gas or vapor flow perpendicular to a catalyst-fiHed aimulus or panel. These are used for rapid reactions to reduce stresses on the catalyst or to minimize pressure drops. Similar cross-flow configurations also are used for processing soHds moving... [Pg.507]

Secondary Structure. The silkworm cocoon and spider dragline silks are characterized as an antiparaHel P-pleated sheet wherein the polymer chain axis is parallel to the fiber axis. Other silks are known to form a-hehcal (bees, wasps, ants) or cross- P-sheet (many insects) stmctures. The cross-P-sheets are characterized by a polymer chain axis perpendicular to the fiber axis and a higher serine content. Most silks assume a range of different secondary stmctures during processing from soluble protein in the glands to insoluble spun fibers. [Pg.77]


See other pages where Perpendicular processes is mentioned: [Pg.295]    [Pg.203]    [Pg.203]    [Pg.62]    [Pg.203]    [Pg.175]    [Pg.295]    [Pg.203]    [Pg.203]    [Pg.62]    [Pg.203]    [Pg.175]    [Pg.288]    [Pg.463]    [Pg.885]    [Pg.926]    [Pg.1065]    [Pg.1499]    [Pg.1500]    [Pg.2117]    [Pg.101]    [Pg.194]    [Pg.313]    [Pg.143]    [Pg.144]    [Pg.172]    [Pg.175]    [Pg.177]    [Pg.178]    [Pg.133]    [Pg.343]    [Pg.129]    [Pg.387]    [Pg.221]    [Pg.35]    [Pg.481]    [Pg.324]    [Pg.467]    [Pg.509]    [Pg.527]    [Pg.430]   
See also in sourсe #XX -- [ Pg.53 ]




SEARCH



Perpendicular

© 2024 chempedia.info