Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Peroxyl radical , antioxidant

Reactions Limited by Rotational Diffusion in Polymer Matrix Antioxidants Reacting with Peroxyl Radicals Antioxidants Reacting with Alkyl Radicals Cyclic Chain Termination in Oxidized Polymers... [Pg.14]

Laranjinha, J.A., Almeida, L.M. Madeira, VM. (1994). Reactivity of dietary phenolic acids with peroxyl radicals antioxidant activity upon low density Upopiotein peroxidation. Biochemical... [Pg.280]

The total antioxidant activity of teas and tea polyphenols in aqueous phase oxidation reactions has been deterrnined using an assay based on oxidation of 2,2 -azinobis-(3-ethylbenzothiazoline-sulfonate) (ABTS) by peroxyl radicals (114—117). Black and green tea extracts (2500 ppm) were found to be 8—12 times more effective antioxidants than a 1-mAf solution of the water-soluble form of vitamin E, Trolox. The most potent antioxidants of the tea flavonoids were found to be epicatechin gallate and epigallocatechin gallate. A 1-mAf solution of these flavanols were found respectively to be 4.9 and 4.8 times more potent than a 1-mAf solution of Trolox in scavenging an ABT radical cation. [Pg.373]

Irg 1076, AO-3 (CB), are used in combination with metal dithiolates, e.g., NiDEC, AO-30 (PD), due to the sensitized photoxidation of dithiolates by the oxidation products of phenols, particularly stilbenequinones (SQ, see reaction 9C) (Table 3). Hindered piperidines exhibit a complex behavior when present in combination with other antioxidants and stabilizers they have to be oxidized initially to the corresponding nitroxyl radical before becoming effective. Consequently, both CB-D and PD antioxidants, which remove alkyl peroxyl radicals and hydroperoxides, respectively, antagonise the UV stabilizing action of this class of compounds (e.g.. Table 3, NiDEC 4- Tin 770). However, since the hindered piperidines themselves are neither melt- nor heat-stabilizers for polymers, they have to be used with conventional antioxidants and stabilizers. [Pg.117]

As strong antioxidants and scavengers of superoxide, hydroxyl and peroxyl radicals, tea flavonoids can suppress radical chain reactions and terminate lipid peroxidation (Kumamoto and Sonda, 1998, Yang and Wang, 1993). [Pg.138]

Therefore depending upon the conditions used to simulate either in vitro or in vivo oxidation, catechins or other phenolic compounds display differences in their antioxidant properties. Catechins also limited the consumption of a-tocopherol, allowing it to act as a scavenger within cell membranes whilst the catechins scavenged aqueous peroxyl radicals near the membrane surface (Pietta and Simonetti, 1998). [Pg.139]

MbFe(IV)=0 and with lipid peroxyl radicals (Castellucio et al, 1995). It may accordingly be concluded that the most relevant single parameter for predicting the antioxidative activity of a new plant phenol would be the standard reduction potential, E . [Pg.329]

PEDRIELLI p, HOLKERi L M and SKIBSTED L H (2001b) Antioxidant activity of (+)-catechin. Rate constant for hydrogen atom transfer to peroxyl radicals, Eur Food Res Technol, 213, 405-8. [Pg.344]

The antioxidant property of ferulic acid and related compounds from rice bran was reported by Kikuzaki et al, (2002). Their results indicated that these compounds elicit their antioxidant function through radical scavenging activity and their affinity with lipid substrates. Another recent study reported by Butterfield et al, (2002) demonstrated that ferulic acid offers antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro. The effect of ferulic acid on blood pressure (BP) was investigated in spontaneously hypertensive rats (SHR). After oral administration of ferulic acid the systolic blood pressure (SBP) decreased in a dose-dependent manner. There was a significant correlation between plasma ferulic acid and changes in the SBP of the tail artery, suggesting... [Pg.361]

BUTTERFIELD D A, MARINA A, JAROSLAW K, ANTONIO s (2002) FeruUc add antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro Structure activity studies. JNutri Biochem, 13(5) 273-81. [Pg.371]

The protective effects of carotenoids against chronic diseases appear to be correlated to their antioxidant capacities. Indeed, oxidative stress and reactive oxygen species (ROS) formation are at the basis of oxidative processes occurring in cardiovascular incidents, cancers, and ocular diseases. Carotenoids are then able to scavenge free radicals such as singlet molecular oxygen ( O2) and peroxyl radicals particularly, and protect cellular systems from oxidation. [Pg.135]

However, peroxidation can also occur in extracellular lipid transport proteins, such as low-density lipoprotein (LDL), that are protected from oxidation only by antioxidants present in the lipoprotein itself or the exttacellular environment of the artery wall. It appeats that these antioxidants are not always adequate to protect LDL from oxidation in vivo, and extensive lipid peroxidation can occur in the artery wall and contribute to the pathogenesis of atherosclerosis (Palinski et al., 1989 Ester-bauer et al., 1990, 1993 Yla-Herttuala et al., 1990 Salonen et al., 1992). Once initiation occurs the formation of the peroxyl radical results in a chain reaction, which, in effect, greatly amplifies the severity of the initial oxidative insult. In this situation it is likely that the peroxidation reaction can proceed unchecked resulting in the formation of toxic lipid decomposition products such as aldehydes and the F2 isoprostanes (Esterbauer et al., 1991 Morrow et al., 1990). In support of this hypothesis, cytotoxic aldehydes such as 4-... [Pg.24]

In the previous section, we have described some of the mechanisms that may lead to the fijrmation of lipid hydroperoxides or peroxyl radicals in lipids. If the peroxyl radical is formed, then this will lead to propagation if no chain-breaking antioxidants are present (Scheme 2.1). However, in many biological situations chain-breaking antioxidants are present, for example, in LDL, and these will terminate the peroxyl radical and are consumed in the process. This will concomitandy increase the size of the peroxide pool in the membrane or lipoprotein. Such peroxides may be metabolized by the glutathione peroxidases in a cellular environment but are probably more stable in the plasma comjxutment. In the next section, the promotion of lipid peroxidation if the lipid peroxides encounter a transition metal will be considered. [Pg.27]

LOO, the peroxyl radical LH, the lipid substrate L, the lipid-derived alkyl radical AH, a chain-breaking antioxidant A, the antioxidant-derived radical. Copper is the catalyst in this reaction and would also form the alkoxy radical as shown in Reaction 2.9 (see text), which is omitted here for the sake of clarity. [Pg.27]

In this reaction scheme, the steady-state concentration of peroxyl radicals will be a direa function of the concentration of the transition metal and lipid peroxide content of the LDL particle, and will increase as the reaction proceeds. Scheme 2.2 is a diagrammatic representation of the redox interactions between copper, lipid hydroperoxides and lipid in the presence of a chain-breaking antioxidant. For the sake of clarity, the reaction involving the regeneration of the oxidized form of copper (Reaction 2.9) has been omitted. The first step is the independent decomposition of the Upid hydroperoxide to form the peroxyl radical. This may be terminated by reaction with an antioxidant, AH, but the lipid peroxide formed will contribute to the peroxide pool. It is evident from this scheme that the efficacy of a chain-breaking antioxidant in this scheme will be highly dependent on the initial size of the peroxide pool. In the section describing the copper-dependent oxidation of LDL (Section 2.6.1), the implications of this idea will be pursued further. [Pg.27]

The chain-breaking antioxidant must scavenge peroxyl radicals at a fester rate than they can react with another unsaturated fetty acid (reaction 2.10). The reverse reaction, whereby the antioxidant radical converts the lipid peroxide to a peroxyl radical, should also be slow (reaction 2.11 in Scheme 2.3). [Pg.28]

The antioxidant radical formed must react at a lower rate with unsaturated fetty acids than the peroxyl radical (Reaction 2.12 in Scheme 2.3). [Pg.28]

Scheme 2.3 The inhibition of iipid peroxidation by antioxidants, in this scheme, AH represents an antioxidant A, the antioxidant-derived radicai LH, the lipid substrate LOj, the peroxyl radical L, the alkyl radical LOOM, the lipid hydroperoxide. Scheme 2.3 The inhibition of iipid peroxidation by antioxidants, in this scheme, AH represents an antioxidant A, the antioxidant-derived radicai LH, the lipid substrate LOj, the peroxyl radical L, the alkyl radical LOOM, the lipid hydroperoxide.
The efficiency of the antioxidant will depend on the ratio of the rates of Reaaion 2.10 to those for Reactions 2.11 and 2.12. A compound that is capable of reducing the antioxidant radical (A ) back to the parent compound (AH) will compete with Reactions 2.11 and 2.12, and so increase the efficiency of peroxyl radical scavenging (Reaction 2.10). In addition, the steady-state concentration of the antioxidant wiU be maintained at its initial concentration for a longer period and this should also result in more efficient suppression of the peroxidation reaction. The net result of these effects will be a synergistic enhancement of antioxidant activity. [Pg.29]

The potency of a chain-breaking antioxidant, which scavenges peroxyl radicals, will decrease as the concentration of lipid peroxides in the LDL particle increases (Scheme 2.2). This is illustrated in the experiment shown in Fig. 2.3 in which the antioxidant potency of a peroxyl radical scavenger (BHT) decreases as a function of added exogenous hpid hydroperoxide. If the endogenous lipid peroxide content of LDL were to vary between individuals, this could explain the observed diferences in the effectiveness of a-tocopherol in suppressing lipid peroxidation promoted by copper. [Pg.32]

Bilirubin (normal plasma concentration < 20 iM) is able to scavenge singlet oxygen and peroxyl radicals. It has been proposed that bilirubin bound to human albumin contributes significantly to the non-enzymic antioxidant defences in human plasma (Stocker and Ames, 1987). [Pg.42]

Wayner, D., Burton, G., Ingold, K.U. and Locke, S. (1985). Quantitative measurement of total peroxyl radical trapping antioxidant capability of human blood plasma by controlled peroxidation. FEBS Lett. 187, 33-37. [Pg.52]

The major lipid-soluble antioxidant primarily associated with lipid membranes is a-tocopherol (vitamin E). Circulating a-tocopherol is carried by chylomicrons, LDL and HDL and also has extracellular antioxidant capacities. As a chain-breaking antioxidant, it short circuits the propagation phase of lipid peroxidation because the peroxyl radical will react with a-tocopherol more rapidly than a polyunsaturated ffitty acid (Burton and Traber, 1990). The resulting a-tocopheryl radical reacts with a second peroxyl radical to form an inactive, nonradical complex. In vitro, ascorbate regenerates the tocopheryl radical into its native non-radical form (Burton and Traber, 1990). [Pg.101]

Ascorbate is known to act as a water-soluble antioxidant, reacting rapidly with superoxide, hydroxyl and peroxyl radicals. However, reduced ascorbate can react non-enzymatically with molecular oxygen to produce dehydroascorbate and hydrogen peroxide. Also, ascorbate in the presence of light, hydrogen peroxide and riboflavin, or transition metals (e.g. Fe, Cu " ), can give rise to hydroxyl radicals (Delaye and Tardieu, 1983 Ueno et al., 1987). These phenomena may also be important in oxidative damage to the lens and subsequent cataract formation. [Pg.130]

Mooradian (1993) has studied the antioxidant properties of 14 steroids in a non-membranous system in which the fluorescence of the protein phycoerythrin was measured in the presence of a lipid peroxyl radical generator (ABAP). Oxidation of the protein produces a fluorescent species. Quenching of fluorescence by a test compound indicates antioxidant activity. Oestrone, testosterone, progesterone, androstenedione, dehydroepian-drosterone, cortisol, tetrahydrocortisone, deoxycorti-... [Pg.269]


See other pages where Peroxyl radical , antioxidant is mentioned: [Pg.206]    [Pg.206]    [Pg.373]    [Pg.8]    [Pg.29]    [Pg.139]    [Pg.321]    [Pg.23]    [Pg.26]    [Pg.26]    [Pg.28]    [Pg.28]    [Pg.28]    [Pg.28]    [Pg.29]    [Pg.30]    [Pg.33]    [Pg.42]    [Pg.43]    [Pg.47]    [Pg.131]    [Pg.145]    [Pg.222]    [Pg.223]    [Pg.421]   


SEARCH



Antioxidants lipid peroxyl radicals

Antioxidants total peroxyl-radical-trapping antioxidant

Peroxyl

Peroxyl radical

Peroxyl radical , antioxidant capacity against

Peroxyl radical , antioxidant phenolic acids

Total peroxyl-radical-trapping antioxidant

Total peroxyl-radical-trapping antioxidant capability of plasma

© 2024 chempedia.info