Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pericyclic reactions types

Generally, at least in theory, an important aspect of cation-radical polymerization, from a commercial viewpoint, is that either catalysts or monomer cation-radicals can be generated electrochem-ically. Such an approach deserves a special treatment. The scope of cation-radical polymerization appears to be very substantial. A variety of cation-radical pericyclic reaction types can potentially be applied, including cyclobutanation, Diels-Alder addition, and cyclopropanation. The monomers that are most effectively employed in the cation-radical context are diverse and distinct from those that are used in standard polymerization methods (i.e., vinyl monomers). Consequently, the obtained polymers are structurally distinct from those available by conventional methods although the molecular masses observed so far are still modest. Further development in this area would be promising. [Pg.361]

Adopting the view that any theory of aromaticity is also a theory of pericyclic reactions [19], we are now in a position to discuss pericyclic reactions in terms of phase change. Two reaction types are distinguished those that preserve the phase of the total electi onic wave-function - these are phase preserving reactions (p-type), and those in which the phase is inverted - these are phase inverting reactions (i-type). The fomier have an aromatic transition state, and the latter an antiaromatic one. The results of [28] may be applied to these systems. In distinction with the cyclic polyenes, the two basis wave functions need not be equivalent. The wave function of the reactants R) and the products P), respectively, can be used. The electronic wave function of the transition state may be represented by a linear combination of the electronic wave functions of the reactant and the product. Of the two possible combinations, the in-phase one [Eq. (11)] is phase preserving (p-type), while the out-of-phase one [Eq. (12)], is i-type (phase inverting), compare Eqs. (6) and (7). Normalization constants are assumed in both equations ... [Pg.343]

Hiickel-type systems (such as Hilcfcel pericyclic reactions and suprafacial sigmatropic shifts) obey the same rules as for sigma electron. The rationale for this observation is clear If the overlap between adjacent p-electron orbitals is positive along the reaction coordinate, only the peraiutational mechanism can... [Pg.346]

The participation of the lone-pair orbital in the cyclization process allows its classification as a so-called pseudopericyclic reaction (76JA4325 97JA4509), which is a subset of a general type of pericyclic reactions... [Pg.264]

Photolysis of the c/.wcyclobufene isomer in Problem 30.25 yields c/s-cyclo-dodecaen-7-yne, but photolysis of the trans isomer yields frm/s-cyclododecaen-7-yne. Explain these results, and identify the type and stereochemistry of the pericyclic reaction. [Pg.1202]

Diels-Alder reactions are found to be little influenced by the introduction of radicals (cf. p. 300), or by changes in the polarity of the solvent they are thus unlikely to involve either radical or ion pair intermediates. They are found to proceed stereoselectively SYN with respect both to the diene and to the dienophile, and are believed to take place via a concerted pathway in which bond-formation and bond-breaking occur more or less simultaneously, though not necessarily to the same extent, in the transition state. This cyclic transition state is a planar, aromatic type, with consequent stabilisation because of the cyclic overlap that can occur between the six p orbitals of the constituent diene and dienophile. Such pericyclic reactions are considered further below (p. 341). [Pg.198]

The transfer of hydrogen from donors to the coal substrate during liquefaction occurs by concerted pericyclic reactions of the type termed group transfers by Woodward and Hoffman (1 ). ... [Pg.323]

In this section are described those domino reactions which start with a retro-pericy-clic reaction. This may be a retro-Diels-Alder reaction, a retro-l,3-dipolar cycloaddition, or a retro-ene reaction, which is then usually followed by a pericyclic reaction as the second step. However, a combination is also possible with another type of transformation as, for example, an aldol reaction. [Pg.330]

The reported proposed sequence also offers two additional alternative mechanisms for the cyclodimerization of BCP (3), involving either intermediate 463 or 464 [6a, 13b]. However, they appear less likely, requiring successive three-membered ring fissions and formations. Alternatively, a thermally allowed concerted [jt2s + rt2a -I- pericyclic reaction involving the Walsh type molecular orbital of cyclopropane [124] has been proposed (Fig. 4) [13b]. [Pg.74]

Perhaps the most successful application of Fukui function and local softness is in the elucidation of the region-selective behavior of different types of pericyclic reactions including the 1,3-dipolar cycloadditions (13DC), Diels-Alder reactions, etc. These reactions can be represented as shown in Scheme 12.4. Considering the concerted approach of the two reactants A and B, there are two possible modes of addition as shown in Pathway-I and Pathway-II. [Pg.172]

Selenoxide syn-eliminations are another reaction type favoured by less polar solvents (Reich, 1979). The planar 5-membered, pericyclic transition state for syn-elimination of [39] was mimicked by the racemic proline-based cis-hapten [39] to give 28 monoclonal antibodies (Appendix entry 8.5) (Zhou et al., 1997). Abzyme SZ-cts-42F7 converted substrate [40] exclusively into... [Pg.273]

However, despite their proven explanatory and predictive capabilities, all well-known MO models for the mechanisms of pericyclic reactions, including the Woodward-Hoffmann rules [1,2], Fukui s frontier orbital theory [3] and the Dewar-Zimmerman treatment [4-6] share an inherent limitation They are based on nothing more than the simplest MO wavefunction, in the form of a single Slater determinant, often under the additional oversimplifying assumptions characteristic of the Hiickel molecular orbital (HMO) approach. It is now well established that the accurate description of the potential surface for a pericyclic reaction requires a much more complicated ab initio wavefunction, of a quality comparable to, or even better than, that of an appropriate complete-active-space self-consistent field (CASSCF) expansion. A wavefunction of this type typically involves a large number of configurations built from orthogonal orbitals, the most important of which i.e. those in the active space) have fractional occupation numbers. Its complexity renders the re-introduction of qualitative ideas similar to the Woodward-Hoffmann rules virtually impossible. [Pg.328]

The interpretation of chemical reactivity in terms of molecular orbital symmetry. The central principle is that orbital symmetry is conserved in concerted reactions. An orbital must retain a certain symmetry element (for example, a reflection plane) during the course of a molecular reorganization in concerted reactions. It should be emphasized that orbital-symmetry rules (also referred to as Woodward-Hoffmann rules) apply only to concerted reactions. The rules are very useful in characterizing which types of reactions are likely to occur under thermal or photochemical conditions. Examples of reactions governed by orbital symmetry restrictions include cycloaddition reactions and pericyclic reactions. [Pg.524]

Intramolecular reactions that differ from the 1,3-dipolar type are also known for olefinic diazo compounds. a,(3-Unsaturated diazo compounds are known to undergo 1,5-cyclization to give pyrazoles. This reaction type may be considered as a variant of an intramolecular [3 - - 2] cycloaddition. A recent ab initio and DPT study classified the cyclization of vinyldiazomethane to 3//-pyrazole as a monorotatory pericyclic process (318). [Pg.598]

Figure 12.4. Procedure for general component analysis illustrated for each of the three types of pericyclic reactions. Figure 12.4. Procedure for general component analysis illustrated for each of the three types of pericyclic reactions.

See other pages where Pericyclic reactions types is mentioned: [Pg.269]    [Pg.186]    [Pg.91]    [Pg.473]    [Pg.18]    [Pg.142]    [Pg.70]    [Pg.10]    [Pg.451]    [Pg.45]    [Pg.686]    [Pg.703]    [Pg.17]    [Pg.32]    [Pg.203]    [Pg.76]    [Pg.327]    [Pg.328]    [Pg.342]    [Pg.327]    [Pg.328]    [Pg.342]    [Pg.351]    [Pg.160]    [Pg.18]    [Pg.368]    [Pg.88]    [Pg.161]    [Pg.169]   
See also in sourсe #XX -- [ Pg.384 ]

See also in sourсe #XX -- [ Pg.926 ]




SEARCH



Pericyclic

Pericyclic reactions

© 2024 chempedia.info