Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Peptidases serine-type

This enzyme [EC 3.4.16.4], also known as serine-type D-alanyl-D-alanine carboxypeptidase, catalyzes the hydrolysis of D-alanyl-D-alanine to yield two D-alanine. This enzyme comprises a group of membrane-bound, bacterial enzymes of the peptidase family Sll. They are distinct from the zinc D-alanyl-D-alanine carboxypeptidase [EC 3.4.17.14]. The enzyme also hydrolyzes the D-alanyl-D-alanine peptide bond in the polypeptide of the cell wall. In addition, the enzyme will also catalyze the transpeptidation of peptidyl-alanyl moieties that are A-acetyl-substituents of D-alanine. The protein is inhibited by j8-lactam antibiotics, which acylate the active-site seryl residue. [Pg.42]

This enzyme [EC 3.4.16.5] (also known as serine-type carboxypeptidase I, cathepsin A, carboxypeptidase Y, and lysosomal protective protein) is a member of the peptidase family SIO and catalyzes the hydrolysis of the peptide bond, with broad specificity, located at the C-terminus of a polypeptide. The pH optimum ranges from 4.5 to 6.0. The enzyme is irreversibly inhibited by diisopropyl fluorophosphate and is sensitive to thiolblocking reagents. [Pg.112]

Peptidases have been classified by the MEROPS system since 1993 [2], which has been available viatheMEROPS database since 1996 [3]. The classification is based on sequence and structural similarities. Because peptidases are often multidomain proteins, only the domain directly involved in catalysis, and which beais the active site residues, is used in comparisons. This domain is known as the peptidase unit. Peptidases with statistically significant peptidase unit sequence similarities are included in the same family. To date 186 families of peptidase have been detected. Examples from 86 of these families are known in humans. A family is named from a letter representing the catalytic type ( A for aspartic, G for glutamic, M for metallo, C for cysteine, S for serine and T for threonine) plus a number. Examples of family names are shown in Table 1. There are 53 families of metallopeptidases (24 in human), 14 of aspartic peptidases (three of which are found in human), 62 of cysteine peptidases (19 in human), 42 of serine peptidases (17 in human), four of threonine peptidases (three in human), one of ghitamicpeptidases and nine families for which the catalytic type is unknown (one in human). It should be noted that within a family not all of the members will be peptidases. Usually non-peptidase homologues are a minority and can be easily detected because not all of the active site residues are conserved. [Pg.877]

All peptidases within a family will have a similar tertiary structure, and it is not uncommon for peptidases in one family to have a similar structure to peptidases in another family, even though there is no significant sequence similarity. Families of peptidases with similar structures and the same order of active site residues are included in the same clan. A clan name consists of two letters, the first representing the catalytic type as before, but with the extra letter P , and the second assigned sequentially. Unlike families, a clan may contain peptidases of more than one catalytic type. So far this has only been seen for peptidases with protein nucleophiles, and these clans are named with an initial P . Only three such clans are known. Clan PA includes peptidases with a chymotrypsin-like fold, which besides serine peptidases such as chymotrypsin... [Pg.877]

It is recommended that a well-characterized peptidase should have a trivial name. Although not rigidly adhered to, there is a different suffix for each catalytic type, metallopeptidases names end with lysin , aspartic peptidases with pepsin , cysteine pqrtidase with ain and serine peptidases with in . [Pg.881]

The action of a peptidase can be neutralized by an inhibitor. Some inhibitors are very broad in their action and are capable of inhibiting many different peptidases, including peptidases of different catalytic types. Some inhibitors are assumed to be specific for a particular catalytic type, but can inhibit peptidases of different types. Leupeptin, for example, is widely used as an inhibitor of serine peptidases from family SI, but it is also known to inhibit cysteine peptidases from family Cl. Cysteine pqrtidase inhibitors such as iodoacetic acid interact with the thiol of the catalytic cysteine. However, this reduction can occur on any thiol group and can affect other, predominantly intracellular, peptidases with a thiol dependency. One example is thimet oligopepti-dase. Metal chelators such as EDTA can inhibit meta-llopeptidases, but can also affect peptidases that have a requirement for metal ions that is indq>endent of their catalytic activity, such as the calcium-dependent cysteine endopqrtidase calpain 1. [Pg.883]

Inhibitors which interact only with peptidases of one catalytic type include pepstatin (aspartic peptidases) E64 (cysteine peptidases from clan CA) diisopropyl fluorophosphates (DFP) and phenylmethane sulfonyl-fluoride (PMSF) (serine peptidases). Bestatin is a useful inhibitor of aminopeptidases. [Pg.883]

The peptidases were separated into catalytic types according to the chemical nature of the group responsible for catalysis. The major catalytic types are, thus, Serine (and the related Threonine), Cysteine, Aspartic, Metallo, and As-Yet-Unclassified. An in-depth presentation of catalytic sites and mechanisms, based on this classification, is the subject of Chapt. 3. [Pg.33]

Serine peptidases can hydrolyze both esters and amides, but there are marked differences in the kinetics of hydrolysis of the two types of substrates as monitored in vitro. Thus, the hydrolysis of 4-nitrophenyl acetate by a-chy-motrypsin occurs in two distinct phases [7] [22-24]. When large amounts of enzyme are used, there is an initial rapid burst in the production of 4-nitro-phenol, followed by its formation at a much slower steady-state rate (Fig. 3.7). It was shown that the initial burst of 4-nitrophenol corresponds to the formation of the acyl-enzyme complex (acylation step). The slower steady-state production of 4-nitrophenol corresponds to the hydrolysis of the acetyl-enzyme complex, regenerating the free enzyme. This second step, called deacylation, is much slower than the first, so that it determines the overall rate of ester hydrolysis. The rate of the deacylation step in ester hydrolysis is pH-dependent and can be slowed to such an extent that, at low pH, the acyl-enzyme complex can be isolated. [Pg.73]

Figure 7. Complete proteolytic stability of all types of P-and y-peptides towards a variety of peptidases. The P-peptides ranged in size from dimer to ISmer. The enzymes include all common types of peptidases (endo/exo, metallo, serine, threonine, and aspartyl proteases). After 40 hours there was no observable cleavage of any of the homologated peptides and no inhibition of the enzymes [41]. Figure 7. Complete proteolytic stability of all types of P-and y-peptides towards a variety of peptidases. The P-peptides ranged in size from dimer to ISmer. The enzymes include all common types of peptidases (endo/exo, metallo, serine, threonine, and aspartyl proteases). After 40 hours there was no observable cleavage of any of the homologated peptides and no inhibition of the enzymes [41].
Enzyme which can hydrolyse the sericin is classified as proteolytic enzymes [63-65]. The proteolytic enzymes cleave the peptide/amide linkages and convert them into amino acid. Mainly there are three types of proteolytic enzymes such as zinc protease (e.g. carboxy peptidase A), serine protease (Chymotrypsin, Trypsin, Thrombin) and thiol protease (acts as cystine residue in the protein). The function of proteolytic enzymes in their degree of degumming depends on the pH of the bath and the optimum activity is found to be different at different pH for different enzymes. [Pg.117]

About 40 families of serine- and threonine-type peptidases can be distinguished on the basis of sequence comparison. However, only a few known families of threonine-dependent peptidases are included therein. By comparing the tertiary structures and the order of the catalytic residues in the sequence most of these families can be grouped into seven clans (cf. Table 12.5-2). [Pg.810]

In a general sense exopeptidases should be the enzymes of choice for stepwise chain assembly since once formed the internal peptide bonds of the growing chain can no longer be proteolytically cleaved from this type of peptidase. Carbox-ypeptidase exhibit superior properties for the stepwise synthesis, especially, carbox-ypeptidase Y (CPD-Y)12101 or other serine peptidases of this type. In principle, aminopeptidases can also be used starting from the C-terminus. Because under these conditions not only the carboxyl component but also the amine component has a free a-amino function, product isolation is more difficult, particularly, if one component is used in excess. Otherwise, stepwise synthesis from the C-terminus is not a problem in chemical peptide synthesis. [Pg.853]


See other pages where Peptidases serine-type is mentioned: [Pg.31]    [Pg.34]    [Pg.204]    [Pg.281]    [Pg.805]    [Pg.810]    [Pg.88]    [Pg.877]    [Pg.881]    [Pg.110]    [Pg.401]    [Pg.235]    [Pg.239]    [Pg.117]    [Pg.247]    [Pg.171]    [Pg.97]    [Pg.494]    [Pg.40]    [Pg.877]    [Pg.881]    [Pg.126]    [Pg.119]    [Pg.807]    [Pg.807]    [Pg.810]    [Pg.835]    [Pg.80]    [Pg.96]    [Pg.264]    [Pg.545]    [Pg.46]    [Pg.210]   
See also in sourсe #XX -- [ Pg.14 , Pg.16 ]




SEARCH



Peptidase serine

Peptidases

© 2024 chempedia.info