Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Peptidases endopeptidase

Encron rizolipasc. endogenous pyrogen > interleukin-1. ENDOPEPTIDASE INHIBITORS act at one or other of the endopeptidase enzymes that cleave the C-terminal residue from oligopeptides or proteins (thus are stricdy proteinases). They can be divided into classes on the basis of their functional characteristics. These classes are dealt with separately in terms of their alternate names, notable substrates and inhibitors. They often act along with ectopeptidases - the carboxypeptidases and amino-peptidases. Endopeptidase inhibitors contain members of the metalloproteinase and serine protease families. Some are important neuropeptidases - concerned with degradation of... [Pg.109]

Table 4. Neural Endopeptidase (Atrial Peptidase) Inhibitors... Table 4. Neural Endopeptidase (Atrial Peptidase) Inhibitors...
A peptidase that can cleave peptide bonds within a protein or peptide. Endopeptidases are classified in Enzyme Nomenclature according to catalytic type and are included in sub-subclasses 3.4.21-3.4.24. [Pg.469]

Gener ally, a family of peptidases contains either exopeptidases or endopeptidases, but there are exceptions. Family Cl contains not only endopeptidases such as cathepsin L, but also the aminopeptidase bleomycin hydrolase. Some members of this family can act as exopeptidases as well as endopeptidases. For example, cathepsin B also acts as a peptidyl-dipeptidase, and... [Pg.882]

Proteases, which can be classified as either peptidases or proteinases. These cleave polypeptide chains eventually into their component amino acids. Peptidases can be further classified as endopeptidases (which act on the main-chain amido groups along the polypeptide molecule) or as exopeptidases (which act only at terminal amino acid residues). [Pg.85]

The NC-IUBMB classifies peptidases (EC 3.4) into exopeptidases (EC 3.4.11-19), which remove one or a few amino acids, and endopeptidases (proteinases, EC 3.4.21-99), which catalyze the cleavage of peptide bonds away from either end of the polypeptide chain (Fig. 2.1). Exopeptidases are further subdivided into enzymes that carry out hydrolysis at the N-terminus or the C-terminus (Figs. 2.1 and 2.2). Thus, aminopeptidases (EC 3.4.11) cleave a single amino acid from the N-terminus [3] those removing a dipep-... [Pg.30]

The NC-IUBMB has introduced a number of changes in the terminology following the proposals made by Barrett, Rawlings and co-workers [7] [8]. The term peptidase should now be used as a synonym for peptide hydrolase and includes all enzymes that hydrolyze peptide bonds. Previously the term peptidases was restricted to exopeptidases . The terms peptidase and protease are now synonymous. For consistency with this nomenclature, the term proteinases has been replaced by endopeptidases . To complete this note on terminology, we remind the reader that the terms cysteine endopeptidases and aspartic endopeptidases were previously called thiol proteinases and acid or carboxyl proteinases , respectively [9],... [Pg.31]

One of the general principles of the Nomenclature Committee is that enzymes should be classified and named according to the reaction they catalyze. However, the overlapping specificities of and great similarities in the action of different peptidases render naming solely on the basis of function impossible [10]. For example, some enzymes can act as both endo- and exopeptidases. Thus, cathepsin H (EC 3.4.22.16) is not only an endopeptidase but also acts as an aminopeptidase (EC 3.4.11), and cathepsin B (EC 3.4.22.1) acts as an endopeptidase as well as a peptidyl-dipeptidase (EC 3.4.15). The actual classification of peptidases is, therefore, a compromise based not only on the reaction catalyzed but also on the chemical nature of the catalytic site, on physiological function, and on historical priority. [Pg.33]

SF 4 Families of endopeptidases (including signal peptidases in family S26) Ser, Lys (His) Single /3-barrel... [Pg.34]

The evolutionary classification has a rational basis, since, to date, the catalytic mechanisms for most peptidases have been established, and the elucidation of their amino acid sequences is progressing rapidly. This classification has the major advantage of fitting well with the catalytic types, but allows no prediction about the types of reaction being catalyzed. For example, some families contain endo- and exopeptidases, e.g., SB-S8, SC-S9 and CA-Cl. Other families exhibit a single type of specificity, e.g., all families in clan MB are endopeptidases, family MC-M14 is almost exclusively composed of carboxypeptidases, and family MF-M17 is composed of aminopeptidases. Furthermore, the same enzyme specificity can sometimes be found in more than one family, e.g., D-Ala-D-Ala carboxypeptidases are found in four different families (SE-S11, SE-S12, SE-S13, and MD-M15). [Pg.35]

The proteolytic activity of some multicatalytic peptidases is stimulated by ATP, whereas that of others is not influenced by ATP [32], The ATP-dependent proteolytic system first found in reticulocytes requires the presence of a heat-stable polypeptide called ubiquitin, one of the roles of which is to mark particular proteins for subsequent degradation [33. ATP-Indepen-dent multicatalytic peptidases can degrade proteins that have a free amino or an /V-acctylatcd terminus, as well as oxidatively altered or phosphorylat-ed proteins [34], The small peptides generated are resistant to multicatalytic peptidases and are further degraded by cytoplasmic endopeptidases and exopeptidases. [Pg.40]

The mechanism of hydrolysis of cysteine peptidases, in particular cysteine endopeptidases (EC 3.4.22), shows similarities and differences with that of serine peptidases [2] [3a] [55 - 59]. Cysteine peptidases also form a covalent, ac-ylated intermediate, but here the attacking nucleophile is the SH group of a cysteine residue, or, rather, the deprotonated thiolate group. Like in serine hydrolases, the imidazole ring of a histidine residue activates the nucleophile, but there is a major difference, since here proton abstraction does not appear to be concerted with nucleophilic substitution but with formation of the stable thiolate-imidazolium ion pair. Presumably as a result of this specific activation of the nucleophile, a H-bond acceptor group like Glu or Asp as found in serine hydrolases is seldom present to complete a catalytic triad. For this reason, cysteine endopeptidases are considered to possess a catalytic dyad (i.e., Cys-S plus H-His+). The active site also contains an oxyanion hole where the terminal NH2 group of a glutamine residue plays a major role. [Pg.77]

These proteolytic enzymes are all endopeptidases, which hydrolyse links in the middle of polypeptide chains. The products of the action of these proteolytic enzymes are a series of peptides of various sizes. These are degraded further by the action of several peptidases (exopeptidases) that remove terminal amino acids. Carboxypeptidases hydrolyse amino acids sequentially from the carboxyl end of peptides. They are secreted by the pancreas in proenzyme form and are each activated by the hydrolysis of one peptide bond, catalysed by trypsin. Aminopeptidases, which are secreted by the absorptive cells of the small intestine, hydrolyse amino acids sequentially from the amino end of peptides. In addition, dipeptidases, which are structurally associated with the glycocalyx of the entero-cytes, hydrolyse dipeptides into their component amino acids. [Pg.80]

This zinc-dependent nonhemorrhagic endopeptidase [EC 3.4.24.43] isolated from the venom of the rattlesnake Crotalus atrox is a peptidase family M12B member that catalyzes the hydrolysis of the His —Leu, Ser —His, ... [Pg.74]

This lysosomal endopeptidase [EC 3.4.23.5] is similar to pepsin A, except that the specificity is narrower and will not hydrolyze the Gln" —His peptide bond in the B chain of insulin. The enzyme is a member of the peptidase family Al. [Pg.121]

This endopeptidase [EC 3.4.21.20], a member of the peptidase family SI, has substrate specificity similar to that of chymotrypsin C. [Pg.122]

This mammalian lysosomal endopeptidase [EC 3.4.22.16] is also known as aleurain, cathepsin B3, cathepsin BA, and benzoylarginineinaphthylamide hydrolase. A member of the peptidase family Cl, the enzyme also acts with an aminopeptidase activity, preferring Arg— Xaa peptide bonds. [Pg.122]

This peptidase family Cl enzyme [EC 3.4.22.15] is an lysosomal endopeptidase with specificity akin to papain. Cathepsin L displays a higher activity toward protein substrates than does cathepsin B. [Pg.122]

This enzyme [EC 3.4.21.39], also referred to as mast cell protease I and skeletal muscle (SK) protease, is an endopeptidase that has been isolated from mast cell granules. It belongs to the peptidase family SI and catalyzes the hydrolysis of peptide bonds, preferring Phe-Xaa > Tyr-Xaa > Trp-Xaa > Leu-Xaa. [Pg.150]

This enzyme [EC 3.4.22.6], also known as papaya proteinase II, is a member of the peptidase family Cl. It is the major endopeptidase of papaya (Carica papaya) latex. It has a specificity similar to that of papain. In addition, there are a number of chromatographic forms of the enzyme. [Pg.150]

Glutamyl endopeptidase [EC 3.4.21.19] (also known as staphylococcal serine proteinase, V8 proteinase, protease V8, and endoproteinase Glu-C), a member of the peptidase family S2B, catalyzes the hydrolysis of Asp-Xaa and Glu-Xaa peptide bonds. In appropriate buffers, the specificity of the bond cleavage is restricted to Glu-Xaa. Peptide bonds involving bulky side chains of hydrophobic aminoacyl residues are hydrolyzed at a lower rate. [Pg.316]

Glutamyl endopeptidase 11 [EC 3.4.21.82], also known as glutamic acid-specific protease, catalyzes the hydrolysis of peptide bonds, exhibiting a preference for Glu-Xaa bonds much more than for Asp-Xaa bonds. The enzyme has a preference for prolyl or leucyl residues at P2 and phenylalanyl at P3. Hydrolysis of Glu-Pro and Asp-Pro bonds is slow. This endopeptidase is a member of the peptidase family S2A. [Pg.316]

These zinc-dependent endopeptidases (meprin A [EC 3.4.24.18] and meprin B [EC 3.4.24.63] ) are members of the peptidase family M12A. They catalyze the hydrolysis of peptide bonds in proteins and peptide substrates. Meprin A, a membrane-bound enzyme that has been isolated from mouse and rat kidney and intestinal brush borders as well as salivary ducts, acts preferentially on carboxyl side of hydrophobic amino acyl residues. Meprin A and B are insensitive to inhibition by phosphora-midon and thiorphan. [Pg.452]

This endopeptidase [EC 3.4.22.2], a member of the Cl peptidase family hydrolyzes peptide bonds in proteins, exhibiting a broad specificity for those bonds. There is a preference for an amino acyl residue bearing a large hydrophobic side chain at the P2 position and the enzyme does not accept a valyl residue at Pi. [Pg.536]


See other pages where Peptidases endopeptidase is mentioned: [Pg.802]    [Pg.802]    [Pg.299]    [Pg.208]    [Pg.96]    [Pg.882]    [Pg.882]    [Pg.1273]    [Pg.254]    [Pg.126]    [Pg.249]    [Pg.40]    [Pg.41]    [Pg.78]    [Pg.338]    [Pg.356]    [Pg.265]    [Pg.63]    [Pg.382]    [Pg.150]    [Pg.156]    [Pg.541]    [Pg.619]   
See also in sourсe #XX -- [ Pg.353 , Pg.355 , Pg.356 ]




SEARCH



Endopeptidases

Endopeptidases endopeptidase

Peptidases

© 2024 chempedia.info