Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Penetration theory coefficient

U. Single water drop in air, liquid side coefficient / jy l/2 ki = 2 ), short contact times / J 1 lcontact times dp [T] Use arithmetic concentration difference. Penetration theory, t = contact time of drop. Gives plot for k a also. Air-water system. [lll]p.. 389... [Pg.615]

Weekman and Myers (W3) measured wall-to-bed heat-transfer coefficients for downward cocurrent flow of air and water in the column used in the experiments referred to in Section V,A,4. The transition from homogeneous to pulsing flow corresponds to an increase of several hundred percent of the radial heat-transfer rate. The heat-transfer coefficients are much higher than those observed for single-phase liquid flow. Correlations were developed on the basis of a radial-transport model, and the penetration theory could be applied for the pulsing-flow pattern. [Pg.103]

These relations between the various coefficients are valid provided that the transfer rate is linearly related to the driving force and that the equilibrium relationship is a straight line. They are therefore applicable for the two-film theory, and for any instant of time for the penetration and film-penetration theories. In general, application to time-averaged coefficients obtained from the penetration and film-penetration theories is not permissible because the condition at the interface will be time-dependent unless all of the resistance lies in one of the phases. [Pg.620]

As noted previously, for equimolecular counterdiffusion, the film transfer coefficients, and hence the corresponding HTUs, may be expressed in terms of the physical properties of the system and the assumed film thickness or exposure time, using the two-film, the penetration, or the film-penetration theories. For conditions where bulk flow is important, however, the transfer rate of constituent A is increased by the factor Cr/Cgm and the diffusion equations can be solved only on the basis of the two-film theory. In the design of equipment it is usual to work in terms of transfer coefficients or HTUs and not to endeavour to evaluate them in terms of properties of the system. [Pg.625]

In the Danckwerts model, it is assumed that elements of the surface have an age distribution ranging from zero to infinity. Obtain the age distribution function for this model and apply it to obtain the average, mass Iransfer coefficient at the surface, given that from the penetration theory the mass transfer coefficient for surface of age t is VlD/(7rt, where D is the diffusivity. [Pg.857]

The experimental results imply that the main reaction (eq. 1) is an equilibrium reaction and first order in nitrogen monoxide and iron chelate. The equilibrium constants at various temperatures were determined by modeling the experimental NO absorption profile using the penetration theory for mass transfer. Parameter estimation using well established numerical methods (Newton-Raphson) allowed detrxmination of the equilibrium constant (Fig. 1) as well as the ratio of the diffusion coefficients of Fe"(EDTA) andNO[3]. [Pg.794]

In addition to temperature and concentration, diffusion in polymers can be influenced by the penetrant size, polymer molecular weight, and polymer morphology factors such as crystallinity and cross-linking density. These factors render the prediction of the penetrant diffusion coefficient a rather complex task. However, in simpler systems such as non-cross-linked amorphous polymers, theories have been developed to predict the mutual diffusion coefficient with various degrees of success [12-19], Among these, the most notable are the free volume theories [12,17], In the following subsection, these free volume based theories are introduced to illustrate the principles involved. [Pg.465]

For the mass transfer coefficient on the outside of the drop kc, Eq. (9.34), according to the penetration theory by Highbie [19], obtains the contact time t as the quotient between the rising distance between two stages and the rising velocity. [Pg.405]

Compared with the Higbie penetration theory, the main difference consists in the fact that both the spatial and temporal dependence of the concentration are taken into account. In other words, the elements of liquid are characterized not only by their time of contact A with the interface, but also by their dimension x0 along the main flow direction. The average mass transfer coefficient should be, therefore, defined as... [Pg.88]

The theories vary in the assumptions and boundary conditions used to integrate Fick s law, but all predict the film mass transfer coefficient is proportional to some power of the molecular diffusion coefficient D", with n varying from 0.5 to 1. In the film theory, the concentration gradient is assumed to be at steady state and linear, (Figure 3-2) (Nernst, 1904 Lewis and Whitman, 1924). However, the time of exposure of a fluid to mass transfer may be so short that the steady state gradient of the film theory does not have time to develop. The penetration theory was proposed to account for a limited, but constant time that fluid elements are exposed to mass transfer at the surface (Higbie, 1935). The surface renewal theory brings in a modification to allow the time of exposure to vary (Danckwerts, 1951). [Pg.82]

Postulating that n is dependent on the turbulence in the system, Dobbins (1956) proposed that under sufficiently turbulent conditions, n approaches 0.5 (surface renewal or penetration theory), while under laminar or less turbulent conditions n approaches 1.0 (film theory). Thus, the selection of the value for n to predict the mass transfer coefficient should depend on the degree of turbulence in the system ... [Pg.82]

Penetration theory (Higbie, 1935)assumes that turbulent eddies travel from the bulk of the phase to the interface where they remain for a constant exposure time te. The solute is assumed to penetrate into a given eddy during its stay at the interface by a process of unsteady-state molecular diffusion. This model predicts that the mass-transfer coefficient is directly proportional to the square root of molecular diffusivity... [Pg.228]

As the Hatta number increases, the effective liquid-phase mass-transfer coefficient increases. Figure 14-13, which was first developed by Van Krevelen and Hoftyzer [Rec. Trav. Chim., 67, 563 (1948)] and later refined by Perry and Pigford and by Brian et al. [AlChE J., 7,226 (1961)], shows how the enhancement (defined as the ratio of the effective liquid-phase mass-transfer coefficient to its physical equivalent q = ki/kl) increases with NHa for a second-order, irreversible reaction of the kind defined by Eqs. (14-60) and (14-61). The various curves in Fig. 14-13 were developed based upon penetration theory and... [Pg.20]

As can be seen from Figure 8, if Fo < 0.02, the concentration changes within the film are confined largely to the surface layer and the local mass transfer coefficient is given by the Higbie penetration theory (9) as... [Pg.98]

Taking the active pulse height as 0.05 m and the pulse velocity as 1 m/s, we derive for the mass transfer coefficient in the gas-continuous zone, 11, a value of 10 m/s and in the pulse proper, k, a value of 6 10 m/s. These values compare very well with those given in literature (5, 6) for both gas-continuous and dispersed bubble flow regimes. An estimate of k can also be made by means of the penetration theory, taking the respective liquid in and outside the pulse as the basic for the calculation of the con-... [Pg.400]

Table I liquid side mass transfer coefficient calculated with the penetration theory... Table I liquid side mass transfer coefficient calculated with the penetration theory...
Mass-Transfer Coefficient Denoted by kc, kx, Kx, and so on, the mass-transfer coefficient is the ratio of the flux to a concentration (or composition) difference. These coefficients generally represent rates of transfer that are much greater than those that occur by diffusion alone, as a result of convection or turbulence at the interface where mass transfer occurs. There exist several principles that relate that coefficient to the diffusivity and other fluid properties and to the intensity of motion and geometry. Examples that are outlined later are the film theory, the surface renewal theory and the penetration theory, all of which pertain to idealized cases. For many situations of practical interest like investigating the flow inside tubes and over flat surfaces as well as measuring external flow through banks of tubes, in fixed beds of particles, and the like, correlations have been developed that follow the same forms as the above theories. Examples of these are provided in the subsequent section on mass-transfer coefficient correlations. [Pg.45]

If the velocity of the flowing stream is uniform over a very deep region of liquid (total thickness, ST VDt), the time-averaged mass-transfer coefficient according to penetration theory is given by... [Pg.62]

Penetration theory often is used in analyzing absorption with chemical reaction because it makes no assumption about the depths of penetration of the various reacting species, and it gives a more accurate result when the diffusion coefficients of the reacting species are not equal. When the reaction process is very complex, however, penetration theory is more difficult to use than film theory, and tne latter method normally is preferred. [Pg.62]


See other pages where Penetration theory coefficient is mentioned: [Pg.676]    [Pg.676]    [Pg.510]    [Pg.1403]    [Pg.362]    [Pg.189]    [Pg.619]    [Pg.856]    [Pg.859]    [Pg.876]    [Pg.79]    [Pg.340]    [Pg.303]    [Pg.100]    [Pg.105]    [Pg.294]    [Pg.72]    [Pg.85]    [Pg.56]    [Pg.509]    [Pg.65]    [Pg.240]    [Pg.255]    [Pg.270]    [Pg.153]    [Pg.173]    [Pg.160]   
See also in sourсe #XX -- [ Pg.841 ]




SEARCH



Penetration coefficient

Penetration theory

© 2024 chempedia.info