Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Peak capacity, Chromatographic separation

It is difficult to compare separation techniques in any general way. Comparison may be based on the traditional figures of merit, such as resolution Rs (including column efficiency N, selectivity, retention, and peak capacity), chromatographic speed, sample capacity, sensitivity, detection and column impedance, as well as breadth of application. Usually a tradeoff between these attributes is found. Berger [26] has compared GC, pSFC, cSFC, LC and CE on the basis... [Pg.176]

A reduced peak capacity in one domain may be counterbalanced by an increased peak capacity in another domain. If we know the average peak width of a chromatographic separation and the gradient duration, we can calculate the maximum number of peaks that can be separated. (Note peak capacity does not mean that this number of compounds in a sample will be separated they may still co-elute). That means we can operate between two limits (1) a peak capacity of zero representing a flow injection analysis and (2) a minimal required peak capacity that defines the peak capacity to separate all compounds in a given mixture. Unfortunately, especially in the early stages of drug... [Pg.96]

A practical method for enhancing the peak capacity, and thus the resolution of analytes in multicomponent complex mixtures, can be achieved by changing the mode of the separation during the chromatographic analysis, employing a column switching system in order to optimize a separation. [Pg.115]

A theoretical model whereby maximum peak capacity could be achieved by the use of 3-D planar chromatographic separation was proposed by Guiochon and coworkers (23-27). Unfortunately, until now, because of technical problems, this idea could not be realized in practice. Very recently, however, a special stationary phase, namely Empore silica TLC sheets, has now become available for realization of 3-D PC. This stationary phase, developed as a new separation medium for planar chromatography, contains silica entrapped in an inert matrix of polytetrafluoroethy-lene (PTFE) microfibrils. It has been established that the separating power is only ca. 60% of that of conventional TLC (28) this has been attributed to the very slow solvent migration velocity resulting from capillary action. [Pg.184]

Multidimensional planar chromatographic separations, as we have seen, require not only a multiplicity of separation stages, but also that the integrity of separation achieved in one stage be transferred to the others. The process of separation on a two-dimensional plane is the clearest example of multidimensional separations. The greatest strength of MD-PC, when properly applied, is that compounds are distributed widely over two-dimensional space of high zone (peak) capacity. Another... [Pg.193]

When John Phillips, in 1991, presented the practical possibility of acquiring a real comprehensive two-dimensional gas chromatographic separation (33), the analytical chemists in the oil industry were quick to pounce upon this technique. Venkatramani and Phillips (34) subsequently indicated that GC X GC is a very powerful technique, which offers a very high peak capacity, and is therefore eminently suitable for analysing complex oil samples. These authors were able to count over 10 000 peaks in a GC X GC chromatogram of a kerosine. Blomberg, Beens and co-workers... [Pg.397]

Dolan, J.W., Snyder, L.R., Djordjevic, N.M., Hill, D.W., Waeghe, T.J. (1999). Reversed-phase liquid chromatographic separation of complex samples by optimizing temperature and gradient time I. Peak capacity limitations. J. Chromatogr. A 857, 1-20. [Pg.31]

The aim of this chapter is to evaluate the orthogonality of selected 2DLC systems for the separation of peptides. The orthogonality of different chromatographic modes was quantitatively characterized using a novel geometric approach. Practical peak capacity was calculated from the theoretical peak capacity and the knowledge of... [Pg.262]

This concept assumes that each fraction (peak) collected in the first dimension further separates in the second dimension with regular spacing and that the entire 2D separation space is evenly covered by eluting peaks. More realistically, the peaks would be distributed randomly over the 2D separation space some peaks are likely to coelute, while some area will remain vacant of peaks. Therefore, Equationl2.1 represents an idealized peak capacity estimate although the real number of resolved peaks is lower. Most importantly, the peak capacity proposed by Equation 12.1 is achievable when the chromatographic modes used for separation are completely orthogonal. [Pg.263]

The proposed estimate has several limitations. When taking into account the limited orthogonality of investigated 2DLC modes, the practical peak capacity is reduced approximately to half. It needs to be also emphasized that a full separation power of the first LC dimension is realized only when the number of collected fractions exceeds its peak capacity (Murphy et al., 1998). If the number of fractions analyzed is low, the achievable chromatographic peak capacity suffers. [Pg.280]

While chromatographic peak capacity is not adequate to resolve hundreds of thousands of components, many researchers argue that MS itself is an additional separation dimension with an orthogonal selectivity (separation is based on mass-to-charge ratio). Therefore, the combined resolution of LC and MS is greater than the chromatographically defined peak capacity. The question therefore stands What is the achievable peak capacity of the 2DLC-MS/MS system ... [Pg.280]

It has been argued that in a typical 2DLC proteomic experiment, with only a limited number of fractions submitted for analysis in the second LC dimension, chromatographic peak capacity is less than 1000. This value is considerably lower than the expected sample complexity. Additional resolution is offered by MS, which represents another separation dimension. With the peak capacity defined as the number of MS/MS scans (peptide identifications) accomplished within the LC analysis time, the MS-derived peak capacity was estimated to be in an order of tens of thousands. While the MS peak capacity is virtually independent of LC separation performance, the complexity of the sample entering the MS instrument still defines the quality of MS/MS data acquisition. The primary goal of 2DLC separation is to reduce the complexity of the sample (and concentrate it, if possible) to a level acceptable for MS/MS analysis. What is the acceptable level of complexity to maintain the reliability and the repeatability of DDA experiments remains to be seen. [Pg.284]

Total theoretical peak capacity for the ID and 2D LC/MS analyses of the yeast ribosomal protein sample was calculated as 240 and 700, respectively. Individual separation peak capacities were calculated by dividing the total separation time by the average peak width at baseline, and the 2D peak capacity determined as the product of the peak capacity of the two dimensions. These theoretical calculations rely on optimal use of the two-dimensional separation space, which in turn is dependent upon the lack of correlation between the component retention times in the two separation modes. Thus, the maximum use of the theoretical peak capacity is not only dependent on the selection of chromatographic modes based on different physicochemical... [Pg.306]

One problem is how to optimize throughput (analysis time) without losing peak capacity. Different approaches have been suggested and led to different developments by instrument and column manufacturers. This section will concentrate on the usage of totally porous particle columns for chromatographic separation only. Alternatives are monolithic columns9 and shell packing materials such as Halo or Poroshell.10-13... [Pg.97]


See other pages where Peak capacity, Chromatographic separation is mentioned: [Pg.388]    [Pg.202]    [Pg.232]    [Pg.76]    [Pg.77]    [Pg.113]    [Pg.303]    [Pg.541]    [Pg.244]    [Pg.545]    [Pg.16]    [Pg.23]    [Pg.93]    [Pg.159]    [Pg.182]    [Pg.185]    [Pg.186]    [Pg.202]    [Pg.209]    [Pg.262]    [Pg.280]    [Pg.283]    [Pg.284]    [Pg.292]    [Pg.295]    [Pg.299]    [Pg.300]    [Pg.304]    [Pg.365]    [Pg.96]    [Pg.96]    [Pg.97]    [Pg.97]    [Pg.97]    [Pg.116]   
See also in sourсe #XX -- [ Pg.343 ]




SEARCH



Chromatographic peak

Peak Separation

Peak capacity

Separating capacity

Separation capacity

Separators capacity

© 2024 chempedia.info